Learn More
Large areas of perfectly ordered magnetic CoFe2O4 nanopillars embedded in a ferroelectric BiFeO3 matrix were successfully fabricated via a novel nucleation-induced self-assembly process. The nucleation centers of the magnetic pillars are induced before the growth of the composite structure using anodic aluminum oxide (AAO) and lithography-defined gold(More)
We have grown horizontal oriented, high growth rate, well-aligned polar (0001) single crystalline GaN nanowires and high-density and highly aligned GaN nonpolar (11-20) nanowires on r-plane substrates by metal organic chemical vapor deposition. It can be found that the polar nanowires showed a strong yellow luminescence (YL) intensity compared with the(More)
Fully epitaxial BaTiO(3)/CoFe(2)O(4) ferroelectric/ferromagnetic multilayered nanodot arrays, a new type of magnetoelectric (ME) nanocomposite with both horizontal and vertical orderings, were fabricated via a stencil-derived direct epitaxy technique. By reducing the clamping effect, ferroelectric domain modification and distinct magnetization change(More)
The development of hydrothermal synthesis has greatly promoted bottom-up nanoscience for the rational growth of diverse zinc oxide (ZnO) nanostructures. In comparison with normal ZnO nanowires, ZnO nanostructures with a larger surface area, for instance, branched nanowires, are more attractive in the application fields of catalysis, sensing, dye-sensitized(More)
Low-temperature processes are unremittingly pursued in the fabrication of organic solar cells. The paper reports that the highly efficient and "light-soaking"-free inverted organic solar cell can be achieved by using ZnO thin films processed from the aqueous solution method at a low temperature. The inverted organic solar with an aqueous-processed ZnO thin(More)
Giant optical transmittance changes of over 300% in wide wavelength range from 500 nm to 2500 nm were observed in LaBaCo2O5.5+δ thin films annealed in air and ethanol ambient, respectively. The reduction process induces high density of ordered oxygen vacancies and the formation of LaBaCo2O5.5 (δ = 0) structure evidenced by aberration-corrected transmission(More)
This work reports an unexpected oxidation behavior of Cu nanoparticles embedded in porous Al(2)O(3) confinements that are produced by annealing alucone (an organic-inorganic hybrid material) deposited by molecular layer deposition. An oxidation of such encapsulated Cu nanoparticles by annealing in air produces Cu oxide nanoparticles attached to the outer(More)
Contact and non-contact based atomic force microscopy (AFM) approaches have been extensively utilized to explore various nanoscale surface properties. In most AFM-based measurements, a concurrent electrostatic effect between the AFM tip/cantilever and sample surface can occur. This electrostatic effect often hinders accurate measurements. Thus, it is very(More)