Learn More
This paper studies the problem of building text classifiers using positive and unlabeled examples. The key feature of this problem is that there is no negative example for learning. Recently, a few techniques for solving this problem were proposed in the literature. These techniques are based on the same idea, which builds a classifier in two steps. Each(More)
We investigate the following problem: Given a set of documents of a particular topic or class P , and a large set M of mixed documents that contains documents from class P and other types of documents, identify the documents from class P in M . The key feature of this problem is that there is no labeled nonP document, which makes traditional machine(More)
How to detect protein complexes is an important and challenging task in post genomic era. As the increasing amount of protein-protein interaction (PPI) data are available, we are able to identify protein complexes from PPI networks. However, most of current studies detect protein complexes based solely on the observation that dense regions in PPI networks(More)
Most proteins form macromolecular complexes to perform their biological functions. However, experimentally determined protein complex data, especially of those involving more than two protein partners, are relatively limited in the current state-of-the-art high-throughput experimental techniques. Nevertheless, many techniques (such as yeast-two-hybrid) have(More)
With the rapid growth of location-based social networks, Point of Interest (POI) recommendation has become an important research problem. However, the scarcity of the check-in data, a type of implicit feedback data, poses a severe challenge for existing POI recommendation methods. Moreover, different types of context information about POIs are available and(More)
While recent technological advances have made available large datasets of experimentally-detected pairwise protein-protein interactions, there is still a lack of experimentally-determined protein complex data. To make up for this lack of protein complex data, we explore the mining of existing protein interaction graphs for protein complexes. This paper(More)
Multiprotein complexes play central roles in many cellular pathways. Although many high-throughput experimental techniques have already enabled systematic screening of pairwise protein-protein interactions en masse, the amount of experimentally determined protein complex data has remained relatively lacking. As such, researchers have begun to exploit the(More)
This paper focuses on human activity recognition (HAR) problem, in which inputs are multichannel time series signals acquired from a set of bodyworn inertial sensors and outputs are predefined human activities. In this problem, extracting effective features for identifying activities is a critical but challenging task. Most existing work relies on heuristic(More)