Learn More
Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by crosslinking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict(More)
The kinesin-8 family of microtubule motors plays a critical role in microtubule length control in cells. These motors have complex effects on microtubule dynamics: they destabilize growing microtubules yet stabilize shrinking microtubules. The budding yeast kinesin-8, Kip3, accumulates on plus ends of growing but not shrinking microtubules. Here we identify(More)
Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR)(More)
The stereotypical function of kinesin superfamily motors is to transport cargo along microtubules. However, some kinesins also shape the microtubule track by regulating microtubule assembly and disassembly. Recent work has shown that the kinesin-8 family of motors emerge as key regulators of cellular microtubule length. The studied kinesin-8s are highly(More)
Kinesins are microtubule-based motors involved in various intracellular transports. Neurons, flagellated cells, and pigment cells have been traditionally used as model systems to study the cellular functions of kinesins. Here, we report silkworm posterior silkgland (PSG), specialized cells with an extensive endomembrane system for intracellular transport(More)
Programmed cell death-1 (PD-1) is a coinhibitory receptor that suppresses T cell activation and is an important cancer immunotherapy target. Upon activation by its ligand PD-L1, PD-1 is thought to suppress signaling through the T cell receptor (TCR). By titrating PD-1 signaling in a biochemical reconstitution system, we demonstrate that the co-receptor CD28(More)
T cell signaling initiates upon binding of peptide-major histocompatibility complex (pMHC) on an antigen-presenting cell (APC) to the T cell receptor (TCR) on a T cell. TCR phosphorylation in response to pMHC binding is accompanied by segregation of the transmembrane phosphatase CD45 away from TCR-pMHC complexes. The kinetic segregation hypothesis proposes(More)
Biochemical reconstitution has served as an important tool for understanding the mechanisms of many cellular processes including DNA replication, transcription, translation, vesicle trafficking, and ubiquitin-mediated proteolysis. Here, we demonstrate that biochemical reconstitution can be applied to studying a complex signaling pathway involving as many as(More)
Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus end to preferentially disassemble long microtubules. Despite extensive study, the kinesin-8 depolymerase mechanism remains under debate. Here, we provide evidence for an alternative, tubulin curvature-sensing model of microtubule depolymerization by(More)
  • 1