Xiaolan Jiang

Learn More
Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were(More)
Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that(More)
Galloylated catechins and flavonol 3-O-glycosides are characteristic astringent taste compounds in tea (Camellia sinensis). The mechanism involved in the formation of these metabolites remains unknown in tea plants. In this paper, 178 UGT genes (CsUGTs) were identified inC. sinensis based on an analysis of tea transcriptome data. Phylogenetic analysis(More)
Phenolic compounds are major components of tea flavour, in which catechins and flavonol glycosides play important roles in the astringent taste of tea infusion. However, the flavonol glycosides are difficult to quantify because of the large variety, as well as the inefficient seperation on chromatography. In this paper, a total of 15 flavonol glycosides in(More)
In the present study, proanthocyanidins were qualitatively and quantitatively identified using hydrolysis and thiolysis assays, NP-HPLC, HPLC-ESI-MS, MALDI-TOF-MS, (1)H-NMR, and (13)C-NMR techniques in different organs of tea plants. The results showed that in leaves, the tri-hydroxyl, cis- and galloylated flavan-3-ols were the main monomeric catechins(More)
Light is an important source of energy as well as environmental signal for the regulation of biosynthesis and accumulation of multiple secondary metabolites in plants. Polyphenols are the major class of secondary metabolites in tea, which possess potential antioxidant properties. In order to investigate the effect of light signal on the regulation of(More)
Tea (Camellia sinensis) is rich in flavan-3-ols (catechins), especially epicatechin (EC), which is the predominant extension unit of polymeric proanthocyanidins (PAs). However, studies assessing EC's stereochemistry are scarce. Here, a high performance liquid chromatography column using amylose tris-(3, 5-dimethylphenylcarbamate) immobilized on silica-gel(More)
Tea (Camellia sinensis) is an important commercial crop, in which the high content of flavonoids provides health benefits. A flavonoid glycosyltransferase (CsUGT73A20), belonging to cluster IIIa, was isolated from tea plant. The recombinant CsUGT73A20 in Escherichia coli exhibited a broad substrate tolerance toward multiple flavonoids. Among them,(More)
Gastric cancer is difficult to cure due to its clinical heterogeneity and the complexity of its molecular mechanisms. KDM2B, a member of the JHDM family, functions as a histone lysine demethylase. However, the role and mechanisms of KDM2B in gastric cancer have not been elucidated. Here, we showed that KDM2B is commonly expressed in gastric cancer cells.(More)
LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of NtLAR and NtANR s in CsMYB5b transgenic tobacco. Tea is rich in polyphenolic compounds, and catechins are the major polyphenols in tea. The biosynthesis of polyphenols is(More)