Learn More
The optimization of scaffold mechanical properties for neurite extension is critical for neural tissue engineering. Agarose hydrogels can be used to stimulate and maintain three-dimensional neurite extension from primary sensory ganglia in vitro. The present study explores the structure-function relationship between dorsal root ganglion (DRG) neurite(More)
An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by(More)
Agarose hydrogel scaffolds were engineered to stimulate and guide neuronal process extension in three dimensions in vitro. The extracellular matrix (ECM) protein laminin (LN) was covalently coupled to agarose hydrogel using the bifunctional cross-linking reagent 1,19- carbonyldiimidazole (CDI). Compared to unmodified agarose gels, LN-modified agarose gels(More)
Scaffold architecture, surface topography, biochemical and mechanical cues have been shown to significantly improve cellular events and in vivo tissue regeneration. Specifically electrospun nanofiber matrices have gained tremendous interest due to their intrinsic structural resemblance to native tissue extracellular matrix (ECM). The present study reports(More)
High resolution optical coherence tomography (OCT) is capable of providing detailed tissue microstructures that are critical for disease diagnosis, yet its sensitivity is usually degraded since the system key components are typically not working at their respective center wavelengths. We developed a novel imaging system that achieves enhanced sensitivity(More)
Understanding neural cell differentiation and neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study explores the structure-function relationship between a 3D hydrogel scaffold and neural cell process extension and examines the role of ambient charge on neurite extension in 3D scaffolds. A range of agarose(More)
The use of autografts for "bridging" peripheral nerve gaps is limited by lack of suitable donor nerve grafts. Using a tissue-engineering approach, we have designed a three-dimensional scaffold that presents laminin 1 (LN-1) and nerve growth factor (NGF) in vivo. Semipermeable polysulfone tubes were used as carriers to introduce the tissue-engineered(More)
Many next-generation biomaterials will need the ability to not only promote healthy tissue integration but to simultaneously resist bacterial colonization and resulting biomaterials-associated infection. For this purpose, antimicrobial nanofibers of polycaprolactone (PCL) were fabricated by incorporating calcium peroxide. PCL nanofibers containing different(More)
Recent advances in liposome technology have shown promise relative to the introduction of chemotherapeutic agents with reduced toxicity, extended longevity, and potential for cell-specific targeting. In this study we report the engineering of a liposomal delivery system for the chemotherapeutic drug doxorubicin. The system was targeted specifically to C6(More)
Glial scar formation plays a critical role in the regenerative failure in the central nervous system of adult mammals through the formation of mechanical or biochemical barriers as a result of its molecular composition. In this study, we report an in vitro model to study growth-cone behavior at controlled 3D interfaces using layered agarose hydrogels. The(More)