Learn More
The optimization of scaffold mechanical properties for neurite extension is critical for neural tissue engineering. Agarose hydrogels can be used to stimulate and maintain three-dimensional neurite extension from primary sensory ganglia in vitro. The present study explores the structure-function relationship between dorsal root ganglion (DRG) neurite(More)
Agarose hydrogel scaffolds were engineered to stimulate and guide neuronal process extension in three dimensions in vitro. The extracellular matrix (ECM) protein laminin (LN) was covalently coupled to agarose hydrogel using the bifunctional cross-linking reagent 1,19- carbonyldiimidazole (CDI). Compared to unmodified agarose gels, LN-modified agarose gels(More)
An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by(More)
The use of autografts for "bridging" peripheral nerve gaps is limited by lack of suitable donor nerve grafts. Using a tissue-engineering approach, we have designed a three-dimensional scaffold that presents laminin 1 (LN-1) and nerve growth factor (NGF) in vivo. Semipermeable polysulfone tubes were used as carriers to introduce the tissue-engineered(More)
Lipid microtubules that self-assemble from a diacetylenic lipid are suitable structures for the sustained release of bioactive agents. Microtubules were loaded with agents under aqueous conditions and embedded in an agarose hydrogel for localization at areas of interest. Protein release from our microtubule-hydrogel delivery system was characterized in(More)
This study compared litter production, litter decomposition and nutrient return in pure and mixed species plantations. Dry weight and N, P, K, Ca, Mg quantities in the litterfall were measured in one pure Cunninghamia lanceolata plantation (PC) and two mixed-species plantations of C. lanceolata with Alnus cremastogyne (MCA) and Kalopanax septemlobus (MCK)(More)
The stability of implanted electrodes is a significant problem affecting their long-term use in vivo. Problems include mechanical failure and inflammation at the implantation site. The engineering of bioactive electrode coatings has been investigated for its potential to promote in-growth of neural tissue and reduce sheer at the electrode-host interface.(More)
We demonstrate second-harmonic generation (SHG) from sub-micrometer-sized AlGaAs/AlxOy artificially birefringent waveguides. The normalized conversion efficiency is the highest ever reported. We further enhanced the SHG using a waveguide-embedded cavity formed by dichroic mirrors. Resonant enhancements as high as approximately 10x were observed. Such(More)
Soil active organic matter is the main source of soil nutrients, and plays an important role in the formation and stabilization of soil aggregate. Chinese fir (Cunninghamia lanceolata) is the most important fast-growing timber tree species in southern China, but its continuous plantation has caused soil deterioration. The study on the active fractions of(More)
Recent advances in liposome technology have shown promise relative to the introduction of chemotherapeutic agents with reduced toxicity, extended longevity, and potential for cell-specific targeting. In this study we report the engineering of a liposomal delivery system for the chemotherapeutic drug doxorubicin. The system was targeted specifically to C6(More)