Learn More
Agarose hydrogel scaffolds were engineered to stimulate and guide neuronal process extension in three dimensions in vitro. The extracellular matrix (ECM) protein laminin (LN) was covalently coupled to agarose hydrogel using the bifunctional cross-linking reagent 1,19- carbonyldiimidazole (CDI). Compared to unmodified agarose gels, LN-modified agarose gels(More)
An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by(More)
This study compared litter production, litter decomposition and nutrient return in pure and mixed species plantations. Dry weight and N, P, K, Ca, Mg quantities in the litterfall were measured in one pure Cunninghamia lanceolata plantation (PC) and two mixed-species plantations of C. lanceolata with Alnus cremastogyne (MCA) and Kalopanax septemlobus (MCK)(More)
The optimization of scaffold mechanical properties for neurite extension is critical for neural tissue engineering. Agarose hydrogels can be used to stimulate and maintain three-dimensional neurite extension from primary sensory ganglia in vitro. The present study explores the structure-function relationship between dorsal root ganglion (DRG) neurite(More)
Recent advances in liposome technology have shown promise relative to the introduction of chemotherapeutic agents with reduced toxicity, extended longevity, and potential for cell-specific targeting. In this study we report the engineering of a liposomal delivery system for the chemotherapeutic drug doxorubicin. The system was targeted specifically to C6(More)
Scaffold architecture, surface topography, biochemical and mechanical cues have been shown to significantly improve cellular events and in vivo tissue regeneration. Specifically electrospun nanofiber matrices have gained tremendous interest due to their intrinsic structural resemblance to native tissue extracellular matrix (ECM). The present study reports(More)
The surface roughness of metallic orthopaedic implants has typically been used to influence osseointegration and spatially control load transfer to the surrounding bone. Because of the increasing recognition of biomaterials-associated infection as a leading implant failure mode, we are interested to know the relative importance of roughness not only on(More)
High resolution optical coherence tomography (OCT) is capable of providing detailed tissue microstructures that are critical for disease diagnosis, yet its sensitivity is usually degraded since the system key components are typically not working at their respective center wavelengths. We developed a novel imaging system that achieves enhanced sensitivity(More)
The lack of three-dimensional (3-D) high-throughput (HT) screening assays designed to identify anti-cancer invasion drugs is a major hurdle in reducing cancer-related mortality, with the key challenge being assay standardization. Presented is the development of a novel 3-D invasion assay with HT potential that involves surrounding cell-collagen spheres(More)
We demonstrate a new focus engineering scheme to achieve both extended depth of focus (DOF) and sidelobe suppression in spectral-domain optical coherence tomography (SD-OCT) system. Each of the illumination pupil function and the detection pupil function is modulated using an annular pupil filter implemented by center obscuration. The two pupil filters are(More)