Learn More
Predicting species range shifts in response to climatic change is a central aspect of global change studies. An ever growing number of species have been modeled using a variety of species distribution models (SDMs). However, quantitative studies of the characteristics of range shifts are rare, predictions of range changes are hard to interpret, analyze and(More)
The relationship between vegetation and precipitation has been studied extensively , but little is known about its mechanistic linkage to agro-ecosystem sustainability. In this study, we used 250 m MODIS NDVI 16-day composite data and precipitation data for the period 2001–2005 to evaluate the connection between vegetation and precipitation in the Jinghe(More)
The Amur tiger and leopard, once roaming over the Eurasian continent, are now endangered and confined to the Sikhote-Alin Mountains, Russia—a landscape that has been increasingly fragmented due to human activities. The ultimate fate of these big cats depends on whether they can resettle in their previous main historical range in NE China. Recent sightings(More)
Sustainability of agricultural landscapes depends largely on land-use practices. As one of the most productive and widespread agricultural soils, loess is often deep and easily eroded, posing grand challenges for environmental sustainability around the world. One prime example is the Loess Plateau of China, which has been cultivated for more than 7500(More)
It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will(More)
  • 1