Learn More
The MgxZn(1-x)O alloy system may provide an optically tunable family of wide band gap materials that can be used in various UV luminescences, absorption, lighting, and display applications. A systematic investigation of the MgO-ZnO system using ab initio evolutionary simulations shows that MgxZn(1-x)O alloys exist in ordered ground-state structures at(More)
The crystal structures of Rh2B and RhB2 at ambient pressure were explored by using the evolutionary methodology. A monoclinic P2₁/m structure of Rh2B was predicted and donated as Rh2B-I, which is energetically much superior to the previously experimentally proposed Pnma structure. At the pressure of about 39 GPa, the P2₁/m phase of Rh2B transforms to the(More)
The crystal structures and properties of hafnium hydride under pressure are explored using the first-principles calculations based on density function theory. The material undergoes pressure-induced structural phase transition I4/mmm → Cmma → P21/m at 180 and 250 GPa, respectively, and all of these structures are metallic. The superconducting critical(More)
A systematic computational study on the crystal structure of n-diamond has been performed using first-principle methods. A novel carbon allotrope with hexagonal symmetry R32 space group has been predicted. We name it as HR-carbon. HR-carbon composed of lonsdaleite layers and unique C3 isosceles triangle rings, is stable over graphite phase above 14.2 GPa.(More)
Ca(x)Zn(1-x)O alloys are potential candidates to achieve wide band-gap, which might significantly promote the band gap engineering and heterojunction design. We performed a crystal structure search for CaO-ZnO system under pressure, using an ab initio evolutionary algorithm implemented in the USPEX code. Four stable ordered Ca(x)Zn(1-x)O structures are(More)
  • 1