Learn More
INTRODUCTION Genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) have been crucial in advancing the understanding of Alzheimer's disease (AD) pathophysiology. Here, we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS Lymphoblastoid cell lines and DNA and RNA(More)
Many recent imaging genetic studies focus on detecting the associations between genetic markers such as single nucleotide polymorphisms (SNPs) and quantitative traits (QTs). Although there exist a large number of generalized multivariate regression analysis methods, few of them have used diagnosis information in subjects to enhance the analysis performance.(More)
LOF is a well-known approach for density-based outlier detection and has received much attention recently. It is important to design a privacy-preserving LOF outlier detection algorithm as the data on which LOF runs is typically spilt among multiple participants and no one is willing to disclose his sensitive information due to legal or moral(More)
Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the(More)
Enrichment analysis has been widely applied in the genome-wide association studies, where gene sets corresponding to biological pathways are examined for significant associations with a phenotype to help increase statistical power and improve biological interpretation. In this work, we expand the scope of enrichment analysis into brain imaging genetics, an(More)
An enormous amount of sequence data has been generated with the development of new DNA sequencing technologies, which presents great challenges for computational biology problems such as haplotype phasing. Although arduous efforts have been made to address this problem, the current methods still cannot efficiently deal with the incoming flood of large-scale(More)
  • 1