Xiaohui Fang

  • Citations Per Year
Learn More
The formability and mechanical properties of many engineering alloys are intimately related to the formation and growth of twins. Understanding the structure and chemistry of twin boundaries at the atomic scale is crucial if we are to properly tailor twins to achieve a new range of desired properties. We report an unusual phenomenon in magnesium alloys that(More)
Erbium-doped fiber is a gain medium exhibiting homogeneous line broadening at room temperature, while a semiconductor optical amplifier has a dominant feature of inhomogeneous line broadening. In this work, a semiconductor optical amplifier is incorporated into the cavity of an erbium-doped fiber ring laser to form a hybrid gain medium. Theoretical analysis(More)
A high pulse energy passively mode-locked fiber laser operating in the all-normal dispersion regime is demonstrated. The gain material is an Yb-doped multicore photonic crystal fiber with 18 cores in array-type geometry. Robust and self-starting mode locking is achieved using a fast semiconductor saturable absorber mirror. The laser generates 180 nJ chirped(More)
A new method for realizing spectral phase optical code-division multiple-access (OCDMA) coding based on step chirped fiber Bragg gratings (SCFBGs) is proposed and the corresponding encoder/decoder is presented. With this method, a mapping code is introduced for the m-sequence address code and the phase shift can be inserted into the subgratings of the SCFBG(More)
We demonstrated an all-normal-dispersion Yb-doped mode-locked fiber laser based on Bi₂Se₃ topological insulator (TI). Different from previous TI-mode-locked fiber lasers in which TIs were mixed with film-forming agent, we used a special way to paste a well-proportioned pure TI on a fiber end-facet. In this way, the effect of the film-forming agent could be(More)
We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different(More)
Plasmonic nanocavity arrays were achieved by producing isolated silver semi-cylindrical nanoshells periodically on a continuous planar gold film. Hybridization between localized surface plasmon resonance (LSPR) in the Ag semi-cylindrical nanoshells (SCNS) and surface plasmon polaritons (SPP) in the gold film was observed as split bonding and anti-bonding(More)
A combined system to support simultaneous two way mutual pulse injection-seeding and active mode-locking schemes for wavelength tunable optical short pulse generation is presented. The system consists of two gain-switched Fabry-Pérot laser diodes, a bidirectional erbium-doped fiber amplifier, and a tunable optical filter and a coupler. The optical pulses(More)
We report a plasmonic Fabry-Perot (F-P) microcavity with silver nanoparticles and a continuous silver film function as the end mirrors, where the silver nanoparticles were produced through photo-reduction. Filled with a layer of light-emitting polymer, the F-P microcavity becomes an active device with its output spectrum dependent on localized surface(More)