Learn More
Mutations of connexin alpha 8 (GJA8 or Cx50) and connexin alpha 3 (GJA3 or Cx46) in humans have been reported to cause cataracts with semi-dominant inheritance patterns. Targeted null mutations in Gja8 and Gja3 in mice cause cataracts with recessive inheritance. The molecular bases for these differences in inheritance patterns and the mechanism for(More)
There is a good deal of evidence that the lens generates an internal micro circulatory system, which brings metabolites, like glucose, and antioxidants, like ascorbate, into the lens along the extracellular spaces between cells. Calcium also ought to be carried into the lens by this system. If so, the only path for Ca2+ to get out of the lens is to move(More)
Tian, Jiang, Xiaohua Gong, and Zijian Xie. Signal transducing function of Na-K-ATPase is essential for ouabain’s effect on [Ca]i in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 281: H1899–H1907, 2001.—We showed before that Na-K-ATPase is also a signal transducer in neonatal rat cardiac myocytes. Binding of ouabain to the enzyme activates multiple(More)
Loss of gap junctions and impaired intercellular communication are characteristic features of pathological remodeling in heart failure as a result of stress or injury, yet the underlying regulatory mechanism has not been identified. Here, we report that in cultured myocytes, rapid loss of the gap junction protein connexin43 (Cx43) occurs in conjunction with(More)
The development of the vertebrate lens utilizes a sophisticated cell-cell communication network via gap junction channels, which are made up of at least three connexin isoforms, alpha8 (Cx50), alpha3 (Cx46) and alpha1 (Cx43), and which are encoded by three different genes. In a previous study, we reported that, with a disruption of Gja3 (alpha3 connexin),(More)
Lens development and transparency have been hypothesized to depend on intercellular gap junction channels, consisting of alpha3 (Cx46) and alpha8 (Cx50) connexin subunits, to transport metabolites, secondary messages and ions between lens cells. To evaluate this hypothesis, we have generated alpha3(-/-) alpha8(-/-) double knockout mice and characterized(More)
Both connexins and signal transduction pathways have been independently shown to play critical roles in lens homeostasis, but little is known about potential cooperation between these two intercellular communication systems. To investigate whether growth factor signaling and gap junctional communication interact during the development of lens homeostasis,(More)
Different mutations of alpha3 connexin (Cx46 or Gja8) and alpha8 connexin (Cx50 or Gja8), subunits of lens gap junction channels, cause a variety of cataracts via unknown mechanisms. We identified a dominant cataractous mouse line (L1), caused by a missense alpha8 connexin mutation that resulted in the expression of alpha8-S50P mutant proteins. Histology(More)
We have identified a mouse recessive mutation that leads to attenuated and hyperpermeable retinal vessels, recapitulating some pathological features of familial exudative vitreoretinopathy (FEVR) in human patients. DNA sequencing reveals a single nucleotide insertion in the gene encoding the low-density lipoprotein receptor-related protein 5 (LRP5), causing(More)
Mutations within connexin50 (Cx50) have been linked to various cataract phenotypes. To determine the mechanism behind cataract formation we used the paired Xenopus oocyte system in conjunction with transfected HeLa cells and genetically engineered mouse models to examine the functional characteristics of gap junctions in which a cataract-causing mutant of(More)