Learn More
Linearly polarized light can exert an orienting torque on plasmonic nanorods. The torque direction has generally been considered to change when the light wavelength passes through a plasmon longitudinal resonance. Here, we use the Maxwell stress tensor to evaluate this torque in general terms. According to distinct light-matter interaction processes, the(More)
We report a strategy for realizing precise orientation of single silver nanowire using two fiber probes. By launching a laser of 980 nm wavelength into the two fibers, single silver nanowire with a diameter of 600 nm and a length of 6.5 μm suspended in water was trapped and rotated by optical torque resulting from its interaction with optical fields(More)
Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is(More)
The integration of surface plasmon with waveguide is a strategy for lab-on-a-chip compatible optical trapping. Here, we report a method for trapping of nanoparticles using a silver nanowire (AgNW) embedded poly(methyl methacrylate) (PMMA) nanofiber with the assistance of surface plasmon polaritons (SPPs). The nanoparticles (polystyrene, 700 nm diameter) are(More)
  • 1