Xiaoguang Zhi

  • Citations Per Year
Learn More
Within a few days of being isolated, primary human hepatocytes undergo a rapid dedifferentiation process and lose susceptibility to hepatitis B virus (HBV) infection in vitro. This fact has limited their further application. In this study, a convenient and feasible method of preventing this dedifferentiation was established, by co-culturing human fetal(More)
Hepatitis B virus (HBV) biosynthesis is primarily restricted to hepatocytes due to the governing of liver-enriched nuclear receptors (NRs) on viral RNA synthesis. The liver-enriched NR hepatocyte nuclear factor 4α (HNF4α), the key regulator of genes implicated in hepatic glucose metabolism, is also a primary determinant of HBV pregenomic RNA synthesis and(More)
Hepatitis B virus (HBV) infection is one of the most serious and prevalent health problems worldwide. Current anti-HBV medications have a number of drawbacks, such as adverse effects and drug resistance; thus, novel potential anti-HBV reagents are needed. Selenium (Se) has been shown to be involved in both human immunodeficiency virus and hepatitis C virus(More)
Hepatitis B virus (HBV) transcription and replication are essentially restricted to hepatocytes. Based on the HBV enhancer and promoter complex that links hepatic glucose metabolism to its transcription and replication, HBV adopts a regulatory system that is unique to the hepatic gluconeogenic genes. CRTC2, the CREB-regulated transcription coactivator 2, is(More)
Primary human hepatocytes are considered the ideal cellular model for in-vitro studies of liver-specific pathology, such as hepatitis B virus (HBV) infection. However, poor accessibility, limited cell numbers, and lot-to-lot variation of primary human hepatocytes limit their broad application. Human fetal hepatocytes were isolated from postmortem embryonic(More)
  • 1