Learn More
The efficient use of natural gas will require catalysts that can activate the first C-H bond of methane while suppressing complete dehydrogenation and avoiding overoxidation. We report that single iron sites embedded in a silica matrix enable direct, nonoxidative conversion of methane, exclusively to ethylene and aromatics. The reaction is initiated by(More)
The paper introduces a high-frame-rate and high-resolution image acquisition system with DVI Interface, which uses the CMOS image sensor of 2.3 million pixels as the light-sensitive chip and a high-performance FPGA as the main processor. In order to get better image quality and correct the unrealistic color, the image preprocessing is implemented based on(More)
Deformation twinning evolution from a single crystal is conducted by molecular dynamics simulations, to elucidate a twinned face-centered-cubic alloy in an experiment with hardness up to 100 times as that of single crystals, and with ductility simultaneously. Critical twinning stress of cadmium zinc telluride (CdZnTe or CZT) calculated is 1.38 GPa. All the(More)
Increased aldehyde dehydrogenase 1 (ALDH1) activity has been determined to be present in the stem cells of several kinds of cancers including gastric cancer (GC). Nevertheless, which ones of ALDH1's isoenzymes are leading to ALDH1 activity remains elusive. In this study, we examined the prognostic value and hazard ratio (HR) of individual ALDH1 isoenzymes(More)
Although higher protein yield per hectare of water hyacinth than that of soy, high protein content of its leaves and good essential amino acid pattern have been proven, its dietary toxicity for human or animal consumption has not yet been evaluated. Therefore, the acute toxicity of water hyacinth leaves has been evaluated by an animal feeding test. The(More)
  • Xiaoguang Guo, Qiang Fu, +5 authors Xinhe Bao
  • 2012
A noble metal (NM) can stabilize monolayer-dispersed surface oxide phases with metastable nature. The formed "oxide-on-metal" inverse catalyst presents better catalytic performance than the NM because of the introduction of coordinatively unsaturated cations at the oxide-metal boundaries. Here we demonstrate that an ultrathin NM layer grown on a non-NM core(More)
Understanding dynamic changes of catalytically active nanostructures under reaction conditions is a pivotal challenge in catalysis research, which has been extensively addressed in metal nanoparticles but is less explored in supported oxide nanocatalysts. Here, structural changes of iron oxide (FeO(x)) nanostructures supported on Pt in a gaseous environment(More)
  • 1