Learn More
Results on magnetically trapping and manipulating micro-scale beads circulating in a flow field mimicking metastatic cancer cells in human peripheral vessels are presented. Composite contrast agents combining magneto-sensitive nanospheres and highly optical absorptive gold nanorods were conjugated to micro-scale polystyrene beads. To efficiently trap the(More)
Semiconductor quantum dots (QDs) are important fluorescent probes due to their high brightness, multiplexing capability, and photostability. However, applications in quantitative and in vivo imaging are hampered by their sensitivity to chemical environments and potential toxicity. Here we report a surprising finding that the combination of silica and(More)
Engineering plasmonic nanostructures that simultaneously achieve high colloidal stability, high photothermal stability, low non-specific binding to biological specimens, and low toxicity is of significant interest to research in bionanotechnology. Using gold nanorods, we solved this problem by encapsulating them with a multilayer structure, silica,(More)
A new generation of silica encapsulated single quantum dots (QDs) was synthesized based on recent breakthroughs made in coating magnetic nanoparticles and their clusters. In comparison with the traditional Stöber sol–gel method, this new approach is significantly simpler, resulting in QDs with excellent luminescence, stability, size monodispersity, and(More)
Photoacoustic (PA) imaging has been demonstrated to be a promising modality in molecular imaging for detection of nanoparticle-targeted diseased cells or tissues. However, intrinsic absorbers, such as blood, produce strong PA background signals that severely degrade the detection sensitivity and specificity of targeted objects. Magnetomotive photoacoustic(More)
Semiconductor quantum dots (Qdots) are a promising new technology with benefits in the areas of medical diagnostics and therapeutics. Qdots generally consist of a semiconductor core, capping shell, and surface coating. The semiconductor core of Qdots is often composed of group II and VI metals (e.g., Cd, Se, Te, Hg) that are known to have toxic properties.(More)
Contrast-enhanced photoacoustic (PA) imaging has been proposed to identify circulating metastatic cancer cells magnetically trapped in the vasculature. However, its sensitivity is limited by the presence of a strong blood-background signal. This technique can be further improved by the significant suppression of blood background. In the phantom study(More)
Because of their unique optical properties, quantum dots (QDs) have become a preferred system for ultrasensitive detection and imaging. However, since QDs commonly contain Cd and other heavy metals, concerns have been raised regarding their toxicity. QDs are thus commonly synthesised with a ZnS cap structure and/or coated with polymeric stabilisers. We(More)
Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we(More)