Learn More
This paper presents a novel gradient-based image completion algorithm for removing significant objects from natural images or photographs. Our method reconstructs the region of removal in two phases. Firstly, the gradient maps in the removed area are completed through a patch based filling algorithm. After that, the image is reconstructed from the gradient(More)
We present a novel framework which can efficiently evaluate approximate Boolean set operations for B-rep models by highly parallel algorithms. This is achieved by taking axis-aligned surfels of Layered Depth Images (LDI) as a bridge and performing Boolean operations on the structured points. As compared with prior surfel-based approaches, this paper has(More)
Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels(More)
This paper presents a novel feature-aware rendering system that automatically abstracts videos and images with the goal of improving the effectiveness of imagery for visual communication tasks. We integrate the bilateral grid to simplify regions of low contrast, which is faster than the separable approximation to the bilateral filter, and use a feature(More)
We present a new agent-based system for detailed traffic animation on urban arterial networks with diverse junctions like signalized crossing, merging and weaving areas. To control the motion of traffic for visualization and animation purposes, we utilize the popular follow-the-leader method to simulate various vehicle types and intelligent driving styles.(More)
Existing real-time automatic video abstraction systems rely on local contrast only for identifying perceptually important information and abstract imagery by reducing contrast in low-contrast regions while artificially increasing contrast in higher contrast regions. These methods, however, may fail to accentuate an object against its background for the(More)
This paper presents a single-view hair modeling technique for generating visually and physically plausible 3D hair models with modest user interaction. By solving an unambiguous 3D vector field explicitly from the image and adopting an iterative hair generation algorithm, we can create hair models that not only visually match the original input very well(More)