Learn More
Many problems in information processing involve some form of dimen-sionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal(More)
We propose an appearance-based face recognition method called the Laplacianface approach. By using locality preserving projections (LPP), the face images are mapped into a face subspace for analysis. Different from principal component analysis (PCA) and linear discriminant analysis (LDA) which effectively see only the Euclidean structure of face space, LPP(More)
Recently there has been a lot of interest in geometrically motivated approaches to data analysis in high dimensional spaces. We consider the case where data is drawn from sampling a probability distribution that has support on or near a submanifold of Euclidean space. In this paper, we propose a novel subspace learning algorithm called neighborhood(More)
Matrix factorization techniques have been frequently applied in information retrieval, computer vision, and pattern recognition. Among them, Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts based in the human(More)
In supervised learning scenarios, feature selection has been studied widely in the literature. Selecting features in unsupervised learning scenarios is a much harder problem, due to the absence of class labels that would guide the search for relevant information. And, almost all of previous unsupervised feature selection methods are " wrapper " techniques(More)
Linear Discriminant Analysis (LDA) has been a popular method for extracting features which preserve class separability. The projection vectors are commonly obtained by maximizing the between class covariance and simultaneously minimizing the within class covariance. In practice, when there is no sufficient training samples, the covariance matrix of each(More)
Following the intuition that the naturally occurring face data may be generated by sampling a probability distribution that has support on or near a submanifold of ambient space, we propose an appearance-based face recognition method, called orthogonal Laplacianface. Our algorithm is based on the locality preserving projection (LPP) algorithm, which aims at(More)
Linear Discriminant Analysis (LDA) is a popular data-analytic tool for studying the class relationship between data points. A major disadvantage of LDA is that it fails to discover the local geometrical structure of the data manifold. In this paper, we introduce a novel linear algorithm for discriminant analysis, called Locality Sensitive Discriminant(More)
Subspace learning based face recognition methods have attracted considerable interests in recently years, including principal component analysis (PCA), linear discriminant analysis (LDA), locality preserving projection (LPP), neighborhood preserving embedding (NPE), marginal fisher analysis (MFA) and local discriminant embedding (LDE). These methods(More)