Learn More
Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component(More)
We propose an appearance-based face recognition method called the Laplacianface approach. By using locality preserving projections (LPP), the face images are mapped into a face subspace for analysis. Different from principal component analysis (PCA) and linear discriminant analysis (LDA) which effectively see only the Euclidean structure of face space, LPP(More)
Recently there has been a lot of interest in geometrically motivated approaches to data analysis in high dimensional spaces. We consider the case where data is drawn from sampling a probability distribution that has support on or near a submanifold of Euclidean space. In this paper, we propose a novel subspace learning algorithm called neighborhood(More)
In supervised learning scenarios, feature selection has been studied widely in the literature. Selecting features in unsupervised learning scenarios is a much harder problem, due to the absence of class labels that would guide the search for relevant information. And, almost all of previous unsupervised feature selection methods are “wrapper” techniques(More)
Matrix factorization techniques have been frequently applied in information retrieval, computer vision, and pattern recognition. Among them, Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts based in the human(More)
Linear Discriminant Analysis (LDA) has been a popular method for extracting features which preserve class separability. The projection vectors are commonly obtained by maximizing the between class covariance and simultaneously minimizing the within class covariance. In practice, when there is no sufficient training samples, the covariance matrix of each(More)
Following the intuition that the naturally occurring face data may be generated by sampling a probability distribution that has support on or near a submanifold of ambient space, we propose an appearance-based face recognition method, called orthogonal Laplacianface. Our algorithm is based on the locality preserving projection (LPP) algorithm, which aims at(More)
Previous work has demonstrated that the image variations of many objects (human faces in particular) under variable lighting can be effectively modeled by low dimensional linear spaces. The typical linear subspace learning algorithms include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projection (LPP). All(More)