Learn More
Blastocystis has a widespread distribution in a variety of animals, which is a potential source of infection for humans. Previous studies show that Blastocystis sp. subtypes 1–4, 6, and 7 were composed of isolates from humans and animals, while Blastocystis sp. subtype 5 included only pig and cattle isolates. A more recent study on the basis of the SSU rDNA(More)
The ubiquitous coexistence of majority insulating 245 phases and minority superconducting (SC) phases in A(x)Fe(2-y)Se(2) (A = K, Cs, Rb, Tl/Rb, Tl/K) formed by high-temperature routes makes pure SC phases highly desirable for studying the intrinsic properties of this SC family. Here we report that there are at least two pure SC phases,(More)
The possibility of superconductivity in tetragonal FeS has attracted considerable interest because of its similarities to the FeSe superconductor. However, all efforts made to pursue superconductivity in tetragonal FeS have failed so far, and it remains controversial whether tetragonal FeS is metallic or semiconducting. Here we report the observation of(More)
Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite(More)
The mixed-metal sulfide compound with the formula Ba2Fe0.6V1.4S6 was successfully synthesized via solid-state reaction. Ba2Fe0.6V1.4S6 has a quasi-one-dimensional structure and crystallizes in the hexagonal space group P63/mmc. The structure is composed of face-sharing anion octahedron [MS6]8- (M = V or Fe) units to construct infinite chains along the c(More)
Metal-intercalated iron selenides are a class of superconductors that have received much attention but are less understood in comparison with their FeAs-based counterparts. Here, the controversial issues such as Fe vacancy, the real phase responsible for superconductivity, and lattice stability have been addressed based on first-principles calculations. New(More)
Two chromium chalcogenide Cs[Cr(en)2GeSe4] () and Cs[Cr(en)2SnSe4] () have been synthesized by a solvothermal method. Both compounds crystallize in the monoclinic space group P21/n. The structures of the two compounds are characterized by isolated [Cr(en)2MSe4](-) clusters separated by Cs(+) ions. The optical properties of the two compounds were measured(More)
Elucidating the endocytosis and metabolism of nanoparticles in cells could improve the diagnostic sensitivity and therapeutic efficiency. In this work, we explore the cellular uptake mechanism of a biocompatible nanocrystal nanostructure, graphene-isolated-Au-nanocrystals (GIANs), by monitoring the intrinsic Raman and two-photon luminescence signals of(More)
A group of chitin-binding proteins were isolated from tuberous roots of Raphanus sativus by affinity chromatography with deaminated regenerated chitin (Fig. 1). SDS-PAGE showed that there are at least five proteins in the sample (Fig. 2-b). Through carboxyl methyl-cellulose chromatography, two chitin-binding proteins with lysozyme activity, named as CBP1(More)
Na was intercalated between [Fe2S2] layers for the first time, giving a novel compound NaFe(1.6)S2. This material adopts a CaAl2Si2-type structure with ~20% iron vacancies and represents the first layered compound in a ternary Na-M-X (M = Fe, Co, Ni; X = S, Se) system. First-principles calculations reveal that phonon dynamics is an important factor for it(More)