Learn More
Active shape models (ASMs) are often limited by the inability of relatively few eigenvectors to capture the full range of biological shape variability. This paper presents a method that overcomes this limitation, by using a hierarchical formulation of active shape models, using the wavelet transform. The statistical properties of the wavelet transform of a(More)
A method for automated segmentation of major cortical sulci on the outer brain boundary is presented, with emphasis on automatically determining point correspondence and on labeling cortical regions. The method is formulated in a general optimization framework defined on the unit sphere, which serves as parametric domain for convoluted surfaces of spherical(More)
Segmentation and mapping of the human cerebral cortex from magnetic resonance (MR) images plays an important role in neuroscience and medicine. This paper describes a comprehensive approach for cortical reconstruction, flattening, and sulcal segmentation. Robustness to imaging artifacts and anatomical consistency are key achievements in an overall approach(More)
Diffusion weighted magnetic resonance (DWMR or DW) imaging is a fast evolving technique to investigate the connectivity of brain white matter by measuring the self-diffusion of the water molecules in the tissue. Registration is a key step in group analysis of the DW images that may lead to understanding of functional and structural variability of the normal(More)
This paper describes a new, physically interpretable, fully automatic algorithm for removal of tissue autofluorescence (AF) from fluorescence microscopy images, by non-negative matrix factorization. Measurement of signal intensities from the concentration of certain fluorescent reporter molecules at each location within a sample of biological tissue is(More)
A method for building a statistical shape model of sulci of the human brain cortex is described. The model includes sulcal fundi that are defined on a spherical map of the cortex. The sulcal fundi are first extracted in a semi-automatic way using an extension of the fast marching method. They are then transformed to curves on the unit sphere via a conformal(More)
With the improvements in techniques for generating surface models from magnetic resonance (MR) images, it has recently become feasible to study the morphological characteristics of the human brain cortex in vivo. Studies of the entire surface are important for measuring global features, but analysis of specific cortical regions of interest provides a more(More)