Learn More
The polypeptide hormone relaxin has been proven to be effective in promoting both the remodeling and regeneration of various tissues, including cardiac muscle. In addition, our previous study demonstrated that relaxin is beneficial to skeletal muscle healing by both promoting muscle regeneration and preventing fibrosis formation. However, the molecular and(More)
The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded(More)
Wnt signaling plays a crucial role in regulating cell proliferation, differentiation and inducing cardiomyogenesis. Skeletal muscle-derived stem cells (MDSCs) have been shown to be multipotent; however, their potential to aid in the healing of the heart after myocardial infarction appears to be due to the paracrine effects they impart on the host(More)
The limitation in successfully acquiring large populations of stem cell has impeded their application. A new method based on the dedifferentiation of adult somatic cells to generate induced multipotent stem cells would allow us to obtain a large amount of autologous stem cells for regenerative medicine. The current work was proposed to induce a(More)
Two Ca2+-dependent signaling pathways, mediated by the Ca2+-activated phosphatase calcineurin and by the Ca2+-activated kinase Ca2+/calmodulin-dependent kinase (CaMK), are both believed to function in fast-to-slow skeletal muscle fiber type transformation, but questions about the relative importance of the two pathways still remain. Here, the differential(More)
Osteosarcoma (OS) is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their(More)
Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated(More)
BACKGROUND Dedifferentiation of muscle cells in the tissue of mammals has yet to be observed. One of the challenges facing the study of skeletal muscle cell dedifferentiation is the availability of a reliable model that can confidentially distinguish differentiated cell populations of myotubes and non-fused mononuclear cells, including stem cells that can(More)
Osteosarcoma (OS), chondrosarcoma (CSA), and Ewings sarcoma (ES) are the most common primary malignancies of bone, and are rare diseases. As with all sarcomas, the prognosis of these diseases ultimately depends on the presence of metastatic disease. Survival is therefore closely linked with the biology and metastatic potential of a particular bone tumor's(More)
Although it has been speculated that stem cell depletion plays a role in the rapid progression of the muscle histopathology associated with Duchenne Muscular Dystrophy (DMD), the molecular and cellular mechanisms responsible for stem cell depletion remain poorly understood. The rapid depletion of muscle stem cells has not been observed in the(More)