Learn More
Latent semantic models, such as LSA, intend to map a query to its relevant documents at the semantic level where keyword-based matching often fails. In this study we strive to develop a series of new latent semantic models with a deep structure that project queries and documents into a common low-dimensional space where the relevance of a document given a(More)
We explore efficient domain adaptation for the task of statistical machine translation based on extracting sentences from a large general-domain parallel corpus that are most relevant to the target domain. These sentences may be selected with simple cross-entropy based methods, of which we present three. As these sentences are not themselves identical to(More)
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a(More)
This paper presents a novel approach for automatically generating image descriptions: visual detectors, language models, and multimodal similarity models learnt directly from a dataset of image captions. We use multiple instance learning to train visual detectors for words that commonly occur in captions, including many different parts of speech such as(More)
In this paper, we propose a new latent semantic model that incorporates a convolutional-pooling structure over word sequences to learn low-dimensional, semantic vector representations for search queries and Web documents. In order to capture the rich contextual structures in a query or a document, we start with each word within a temporal context window in(More)
We consider learning representations of entities and relations in KBs using the neural-embedding approach. We show that most existing models, including NTN (Socher et al., 2013) and TransE (Bordes et al., 2013b), can be generalized under a unified learning framework, where entities are low-dimensional vectors learned from a neural network and relations are(More)
One of the key problems in spoken language understanding (SLU) is the task of slot filling. In light of the recent success of applying deep neural network technologies in domain detection and intent identification, we carried out an in-depth investigation on the use of recurrent neural networks for the more difficult task of slot filling involving sequence(More)
This paper presents a new hypothesis alignment method for combining outputs of multiple machine translation (MT) systems. An indirect hidden Markov model (IHMM) is proposed to address the synonym matching and word ordering issues in hypothesis alignment. Unlike traditional HMMs whose parameters are trained via maximum likelihood estimation (MLE), the(More)
We propose a hierarchical attention network for document classification. Our model has two distinctive characteristics: (i) it has a hierarchical structure that mirrors the hierarchical structure of documents; (ii) it has two levels of attention mechanisms applied at the word-and sentence-level, enabling it to attend differentially to more and less(More)
This paper develops a model that addresses sentence embedding, a hot topic in current natural language processing research, using recurrent neural networks (RNN) with Long Short-Term Memory (LSTM) cells. The proposed LSTM-RNN model sequentially takes each word in a sentence, extracts its information, and embeds it into a semantic vector. Due to its ability(More)