Learn More
Cajal-Retzius cells are an enigmatic class of neurons located in the most superficial layer of the cerebral cortex, and they play an important role in cortical development. Although many studies have indicated that CR cells are involved in regulating cell migration and cortical maturation, the function of these cells is still not fully understood. Here we(More)
Wnt inhibitor factor-1 (WIF-1) is an extracellular antagonist of Wnts secreted proteins. Here we describe the expression pattern of Wif1 throughout the development of the mouse central nervous system (CNS). Wif1 mRNA can be detected as early as the developmental stage E11, and expression persists to adulthood. In embryonic stages, the level of Wif1(More)
Interkinetic nuclear migration (INM) is a key feature of cortical neurogenesis. INM functions to maximize the output of the neuroepithelium, and more importantly, balance the self-renewal and differentiation of the progenitors. Although INM has been reported to be highly correlated with the cell cycle, little is known about the effects of cell cycle(More)
This study constructs a rat brain T2 -weighted magnetic resonance imaging template including olfactory bulb and a compatible digital atlas. The atlas contains 624 carefully delineated brain structures based on the newest (2005) edition of rat brain atlas by Paxinos and Watson. An automated procedure, as an SPM toolbox, was introduced for spatially(More)
Frizzled transmembrane proteins (Fzd) are receptors of Wnts, and they play key roles during central nervous system (CNS) development in vertebrates. Here we report the expression pattern of Frizzled10 in mouse CNS from embryonic stages to adulthood. Frizzled10 is expressed strongly at embryonic days E8.5 and E9.5 in the neural tube and tail bud. At E10.5,(More)
During cortical development, Cajal-Retzius (CR) cells are among the earliest-born subclasses of neurons. These enigmatic neurons play an important role in cortical development through their expression of the extracellular protein, reelin. CR cells arise from discrete sources within the telencephalon, including the pallial-subpallial border and the medial(More)
Wnt signaling plays an important role in regulating cortical and hippocampal development, but many of the other molecular mechanisms underlying dorsal telencephalic development are largely unknown. We are taking advantage of the highly regionalized expression patterns of signaling components of the Wnt pathway to generate new mouse lines that will be useful(More)
  • 1