Xiaocheng Zou

Learn More
The process of scientific data analysis in high-performance computing environments has been evolving along with the advancement of computing capabilities. With the onset of exascale computing, the increasing gap between compute performance and I/O bandwidth has rendered the traditional method of post-simulation processing a tedious process. Despite the(More)
Efficient I/O on large-scale spatiotemporal scientific data requires scrutiny of both the logical layout of the data (e.g., row-major vs. column-major) and the physical layout (e.g., distribution on parallel filesystems). For increasingly complex datasets, hand optimization is a difficult matter prone to error and not scalable to the increasing(More)
Among the major challenges of transitioning to exascale in HPC is the ubiquitous I/O bottleneck. For analysis and visualization applications in particular, this bottleneck is exacerbated by the write-once-read-many property of most scientific datasets combined with typically complex access patterns. One promising way to alleviate this problem is to(More)
Set intersection is a fundamental operation for evaluating conjunctive queries in the context of scientific data analysis. The state-of-the-art approach in performing set intersection, compressed bitmap indexing, achieves high computational efficiency because of cheap bitwise operations; however, overall efficiency is often nullified by the HPC I/O(More)
Scientific data analytics in high-performance computing environments has been evolving along with the advancement of computing capabilities. With the onset of exascale computing, the increasing gap between compute performance and I/O bandwidth has rendered the traditional post-simulation processing a tedious process. Despite the challenges due to increased(More)
—Adaptive Mesh Refinement (AMR) represents a significant advance for scientific simulation codes, greatly reducing memory and compute requirements by dynamically varying simulation resolution over space and time. As simulation codes transition to AMR, existing analysis algorithms must also make this transition. One such algorithm, connected component(More)
Many scientists rely on indexing and query to identify trends and anomalies within extreme-scale scientific data. Compressed bitmap indexing (e.g., FastBit) is the go-to indexing method for many scientific datasets and query workloads. Recently, the ALACRITY compressed inverted index was shown as a viable alternative approach. Notably, though FastBit and(More)