Learn More
A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the(More)
Apoptosis-inducing factor (AIF), a mitochondrial oxidoreductase, is released into the cytoplasm to induce cell death in response to apoptotic signals. However, the mechanisms underlying this process have not been resolved. We report that inactivation of the Caenorhabditis elegans AIF homolog wah-1 by RNA interference delayed the normal progression of(More)
BACKGROUND Following cleavage by caspase 8, the C-terminus of Bid translocates from the cytosol to the mitochondria that is dependent upon structures formed by the mitochondrial-specific lipid cardiolipin. Once associated with mitochondria, truncated Bid (tBid) causes the potent release of cytochrome c, endonuclease G, and smac. RESULTS We investigated(More)
Cystic fibrosis (CF) is a childhood hereditary disease in which the most common mutant form of the CF transmembrane conductance regulator (CFTR) DeltaF508 fails to exit the endoplasmic reticulum (ER). Export of wild-type CFTR from the ER requires the coat complex II (COPII) machinery, as it is sensitive to Sar1 mutants that disrupt normal coat assembly and(More)
MicroRNAs are novel small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and cancer development and progression. The present study aims to explore the function of miR-206 in the proliferation, apoptosis, motility, and invasion(More)
During apoptosis, dying cells are quickly internalized by neighboring cells or phagocytes, and are enclosed in phagosomes that undergo a maturation process to generate the phagoslysosome, in which cell corpses are eventually degraded. It is not well understood how apoptotic cell degradation is regulated. Here we report the identification and(More)
During apoptosis, phosphatidylserine, which is normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and has been suggested to act as an "eat-me" signal to trigger phagocytosis. It is unclear how phagocytes recognize phosphatidylserine. Recently, a putative phosphatidylserine receptor (PSR) was(More)
Nucleosome arrays undergo salt-dependent self-association into large oligomers in a process thought to recapitulate essential aspects of higher-order tertiary chromatin structure formation. Lysine acetylation within the core histone tail domains inhibits self-association, an effect likely related to its role in facilitating transcription. As acetylation of(More)
BACKGROUND During programmed cell death, apoptotic cells are rapidly removed by phagocytes. How dying cells are recognized remains poorly understood. RESULTS Here we identify a secreted lipid transfer/LPS-binding family protein, NRF-5, which is required for efficient clearance of cell corpses. We observed that phosphatidylserine (PS), which is(More)