Learn More
Differential rhodopsin gene expression within specialized R7 photoreceptor cells divides the retinas of Aedes aegypti and Anopheles gambiae mosquitoes into distinct domains. The two species express the rhodopsin orthologs Aaop8 and Agop8, respectively, in a large subset of these R7 photoreceptors that function as ultraviolet receptors. We show here that a(More)
The retina of the mosquito Aedes aegypti can be divided into four regions based on the non-overlapping expression of a UV sensitive Aaop8 rhodopsin and a long wavelength sensitive Aaop2 type rhodopsin in the R7 photoreceptors. We show here that another rhodopsin, Aaop9, is expressed in all R7 photoreceptors and a subset of R8 photoreceptors. In the dorsal(More)
Multiple mechanisms contribute to a photoreceptor's ability to adapt to ambient light conditions. The mosquito Aedes aegypti expresses the long-wavelength rhodopsin Aaop1 in all R1-R6 photoreceptors and most R8 photoreceptors. These photoreceptors alter the cellular location of Aaop1 and reorganize their photosensitive rhabdomeric membranes on a daily(More)
Visual perception of the environment plays an important role in many mosquito behaviors. Characterization of the cellular and molecular components of mosquito vision will provide a basis for understanding these behaviors. A unique feature of the R7 photoreceptors in Aedes aegypti and Anopheles gambiae is the extreme apical projection of their rhabdomeric(More)
During the larval stages, the visual system of the mosquito Aedes aegypti contains five stemmata, often referred to as larval ocelli, positioned laterally on each side of the larval head. Here we show that stemmata contain two photoreceptor types, distinguished by the expression of different rhodopsins. The rhodopsin Aaop3 (GPROP3) is expressed in the(More)
Many invertebrates carry out a daily cycle of shedding and rebuilding of the photoreceptor's photosensitive rhabdomeric membranes. The mosquito Aedes aegypti shows a robust response, losing nearly all Aaop1 rhodopsin from the rhabdomeric membranes during the shedding process at dawn. Here, we made use of Aaop1 antibodies capable of distinguishing newly(More)
  • 1