Xiao-xin Cao

Learn More
High internal resistance is a key problem limiting the power output of the microbial fuel cell (MFC). Therefore, more knowledge about the internal resistance is essential to enhance the performance of the MFC. However, different methods are used to determine the internal resistance, which makes the comparison difficult. In this study, three different types(More)
The characteristic of anode plays an important role in the performance of the microbial fuel cell (MFC). Thus, carbon nanotube (CN), flexible graphite (FG) and activated carbon (AC) were used as anode material in this study, and the performances of three MFCs (CN-MFC, FG-MFC and AC-MFC) were studied. The results show that CN is a kind of suitable material(More)
The electrochemical limitations on the performance of microbial fuel cells (MFCs) are mainly due to the internal resistance. The total resistance in the MFC was expressed as the apparent internal resistance (R(i)) which was partitioned into ohmic resistance (R(omega)) and non-ohmic resistance (R(n)), referring to the equivalent circuit of the MFC. In the(More)
The biocathode of the two-columnar microbial fuel cell was used to denitrify. Factors influencing denitrification performance and power production were studied. When the external resistance decreased from 50 omega to 5 omega, the nitrate removal rate increased from 0.26 mg/(L x h) to 0.76 mg/(L x h). The nitrite accumulated to 55 mg/L with the external(More)
The influences of the anodic substance, concentration, pH and temperature on the electricity production by MFCs were discussed. The lactic sodium was better than acetic sodium or glucose. The power density of MFC and the concentration of lactic sodium were well filled with Monod model. The power density was 1236 mW/m2 when the pH of anodic chamber was 8.(More)
The initial anode potential of the microbial fuel cell (MFC) was changed by additional circuit in the anode chamber, and the influence of the initial anode potential on the electricigens was studied. When the initial anode potential was 350 mV (vs Hg/Hg2 Cl2), the growth of microorganisms was much slower than that of the microorganisms which grew on the(More)
The packing-type microbial fuel cells (MFCs) were constructed using the granular graphite and the carbon felt as packing materials. The start-up time of the packing-type MFC was about 1 d, which was lower than that of the flat-type MFC. The maximal power density (Pm) of the MFC with carbon felt as packing material was 1502 mW/m2 (37.6 W/m3), which was(More)
As electrochemically active bacteria play an important role in microbial fuel cells (MFCs), it is necessary to get a comprehensive understanding of their electrogenesis mechanisms. In this study, a new electrochemically active bacterium, Klebsiella sp. ME17, was employed into an “H” typed MFC for electrogenesis, with glucose as the electron donor. The(More)
A two-cylinder MFC, which is of new configuration, was constructed to study its power generation and waste water treatment performance. When the graphite granule was used in anode as packing material, the internal resistance was 38.9 Omega. The anodic resistance, ohmic resistance and the cathodic resistance were 5.1, 14.1 and 18.7 Omega respectively. The(More)
  • 1