Learn More
We use measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we directly measure the force required to hold the bacterium in the optical trap and determine the propulsion matrix, which relates the translational and angular velocity of the flagellum to the torques and forces(More)
We use fluorescence correlation spectroscopy and fluorescence recovery after photobleaching to study vesicle dynamics inside the synapses of cultured hippocampal neurons labeled with the fluorescent vesicle marker FM 1-43. These studies show that when the cell is electrically at rest, only a small population of vesicles is mobile, taking seconds to traverse(More)
Adsorption of lambda-phage on sensitive bacteria Escherichia coli is a classical problem but not all issues have been resolved. One of the outstanding problems is the rate of adsorption, which in some cases appears to exceed the theoretical limit imposed by the law of random diffusion. We revisit this problem by conducting experiments along with new(More)
We investigate swimming and chemotactic behaviors of the polarly flagellated marine bacteria Vibrio alginolyticus in an aqueous medium. Our observations show that V. alginolyticus execute a cyclic, three-step (forward, reverse, and flick) swimming pattern that is distinctively different from the run-tumble pattern adopted by Escherichia coli. Specifically,(More)
Membrane proteins are involved in many functions due to their cellular locations. Although the effect of drought on plants has been extensively studied, little is known about the changes of membrane proteome in plants under drought conditions. We used gel-based proteomics to study the effect of drought on membrane protein expression in maize (Zea mays L.)(More)
Two models were recently proposed to enable us to understand the dynamics of synaptic vesicles in hippocampal neurons. In the caged diffusion model, the vesicles diffuse in small circular cages located randomly in the bouton, while in the stick-and-diffuse model the vesicles bind and release from a cellular cytomatrix. In this article, we obtain analytic(More)
It has long been suspected that population heterogeneity, either at a genetic level or at a protein level, can improve the fitness of an organism under a variety of environmental stresses. However, quantitative measurements to substantiate such a hypothesis turn out to be rather difficult and have rarely been performed. Herein, we examine the effect of(More)
It has been theoretically suggested that when a bacterium swims in a fluid, the disturbance it creates is long-ranged and can influence its locomotion. The contribution of these long-range hydrodynamic interactions to swimming cells is examined herein for a number of bacterial strains with well-defined flagellar geometries. We show experimentally for the(More)
Stochastic gene expression in bacteria can create a diverse protein distribution. Most of the current studies have focused on fluctuations around the mean, which constitutes the majority of a bacterial population. However, when the bacterial population is subject to a severe selection pressure, it is the properties of the minority cells that determine the(More)