Xiao-liang Qi

Learn More
Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We fabricated such sample structures with low density and high mobility in which we could tune, through an external gate voltage, the carrier conduction from(More)
We study low energy collective modes and transport properties of the "helical metal" on the surface of a topological insulator. At low energies, electrical transport and spin dynamics at the surface are exactly related by an operator identity equating the electric current to the in-plane components of the spin degrees of freedom. From this relation it(More)
Following the recent observation of the quantum spin Hall (QSH) effect in HgTe quantum wells, an important issue is to understand the effect of impurities on transport in the QSH regime. Using linear response and renormalization group methods, we calculate the edge conductance of a QSH insulator as a function of temperature in the presence of a magnetic(More)
Existence of the magnetic monopole is compatible with the fundamental laws of nature; however, this elusive particle has yet to be detected experimentally. We show theoretically that an electric charge near a topological surface state induces an image magnetic monopole charge due to the topological magneto-electric effect. The magnetic field generated by(More)
Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi(2)Se(3) and related materials have been proposed as three-dimensional topological(More)
The quantum spin Hall (QSH) state is a topologically nontrivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells and in this Letter we predict a similar effect arising in(More)
We consider extended Hubbard models with repulsive interactions on a honeycomb lattice, and the transitions from the semimetal to Mott insulating phases at half-filling. Because of the frustrated nature of the second-neighbor interactions, topological Mott phases displaying the quantum Hall and the quantum spin Hall effects are found for spinless and spin(More)
We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual(More)
We consider (2+1)-dimensional topological quantum states which possess edge states described by a chiral (1+1)-dimensional conformal field theory, such as, e.g., a general quantum Hall state. We demonstrate that for such states the reduced density matrix of a finite spatial region of the gapped topological state is a thermal density matrix of the chiral(More)
We propose a topological order parameter for interacting topological insulators, expressed in terms of the full Green's functions of the interacting system. We show that it is exactly quantized for a time-reversal invariant topological insulator, and it can be experimentally measured through the topological magneto-electric effect. This topological order(More)