Xiao-kun Zhang

Learn More
The Bcl-2 family proteins are key regulators of apoptosis in human diseases and cancers. Though known to block apoptosis, Bcl-2 promotes cell death through an undefined mechanism. Here, we show that Bcl-2 interacts with orphan nuclear receptor Nur77 (also known as TR3), which is required for cancer cell apoptosis induced by many antineoplastic agents. The(More)
TR3, also known as NGFI-B or nur77, is an immediate-early response gene and an orphan member of the steroid/thyroid/retinoid receptor superfamily. We previously reported that TR3 expression was induced by apoptotic stimuli and was required for their apoptotic effect in lung cancer cells. Here, we present evidence that TR3 was also induced by epidermal(More)
The peroxisome proliferator-activated receptor ␥ (PPAR␥) is a nuclear receptor family member that can form a heterodimeric complex with retinoid X receptor (RXR) and initiate transcription of target genes. In this study, we have examined the effects of the PPAR␥ ligand ciglitazone and the RXR ligand SR11237 on growth and induction of retinoic acid receptor(More)
Defects in apoptosis mechanisms play important roles in malignancy and autoimmunity. Orphan nuclear receptor Nur77/TR3 has been demonstrated to bind antiapoptotic protein Bcl-2 and convert it from a cytoprotective to a cytodestructive protein, representing a phenotypic conversion mechanism. Of the 6 antiapoptotic human Bcl-2 family members, we found that(More)
Shikonin derivatives, which are the active components of the medicinal plant Lithospermum erythrorhizon, exhibit many biological effects including apoptosis induction through undefined mechanisms. We recently discovered that orphan nuclear receptor Nur77 migrates from the nucleus to the mitochondria, where it binds to Bcl-2 to induce apoptosis. Here, we(More)
A novel furocoumarin derivative named oxyalloimperatorin (1), together with seventeen furocoumarins 2-18 were isolated from the radix of Angelica dahurica. The chemical structure of new metabolite was characterized by analysis of IR, NMR, and HR-ESI-MS spectroscopic data. Among the isolated compounds, 13, 16, and 18 (each at 20 μM) could significantly(More)
Retinoid X receptor-α (RXRα), a unique member of the nuclear receptor superfamily, represents an intriguing and unusual target for pharmacologic interventions and therapeutic applications in cancer, metabolic disorders and neurodegenerative diseases. Despite the fact that the RXR-based drug Targretin (bexarotene) is currently used for treating human(More)
Dysregulation of β-catenin turnover due to mutations of its regulatory proteins including adenomatous polyposis coli (APC) and p53 is implicated in the pathogenesis of cancer. Thus, intensive effort is being made to search for alternative approaches to reduce abnormally activated β-catenin in cancer cells. Nur77, an orphan member of the nuclear receptor(More)
Retinoid X receptor-alpha (RXRα) is implicated in the regulation of many biological processes and also represents a unique intracellular target for pharmacologic interventions. Efforts on discovery of small molecules targeting RXRα have been primarily focused on the molecules that bind to its classical ligand-binding pocket (LBP). Here, we report the(More)