Xiao guang Lu

Learn More
Theoretical studies have shown that the issue of rupture modes has important implications for fault constitutive laws, stress conditions on faults, energy partition and heat generation during earthquakes, scaling laws, and spatiotemporal complexity of fault slip. Early theoretical models treated earthquakes as crack-like ruptures, but seismic inversions(More)
[1] Seismic inversions show that earthquake risetimes may be much shorter than the overall rupture duration, indicating that earthquakes may propagate as self‐healing, pulse‐like ruptures. Several mechanisms for producing pulse‐like ruptures have been proposed, including velocity‐weakening friction, interaction of dynamic rupture with fault geometry and(More)
We consider the effect of the rupture initiation procedure on supershear transition of Mode II ruptures on interfaces governed by linear slip-weakening friction. Our study is motivated by recent experiments, which demonstrated the transition of spontaneous ruptures from sub-Rayleigh to supershear speeds in the laboratory. In these works the experiments were(More)
Destructive large earthquakes occur as dynamic frictional ruptures along pre-existing interfaces (or faults) in the Earth's crust. One of the important issues in earthquake dynamics is the local duration of relative displacement or slip. Seismic inversions show that earthquakes may propagate as self-healing pulse-like ruptures, with local slip duration(More)
  • 1