Learn More
Finite strain analyses of the left ventricle provide important information on heart function and have the potential to provide insights into the biomechanics of myocardial contractility in health and disease. Systolic dysfunction is the most common cause of heart failure; however, abnormalities of diastolic function also contribute to heart failure, and are(More)
USF is a family of basic helix-loop transcriptional factors that recognizes DNA-binding sites similar to those of the Myc oncoproteins. Here, various functional domains in the mouse USF2 protein were identified and characterized. Indirect immunofluorescence studies with transiently transfected cells revealed that both the basic region and the highly(More)
The anisotropic property of porcine aortic valve leaflet has potentially significant effects on its mechanical behaviour and the failure mechanisms. However, due to its complex nature, testing and modelling the anisotropic porcine aortic valves remains a continuing challenge to date. This study has developed a nonlinear anisotropic finite element model for(More)
USF1 and USF2 are basic helix-loop-helix transcription factors implicated in the control of cellular proliferation. In HeLa cells, the USF proteins are transcriptionally active and their overexpression causes marked growth inhibition. In contrast, USF overexpression had essentially no effect on the proliferation of the Saos-2 osteosarcoma cell line. USF1(More)
USF is a family of transcription factors characterized by a highly conserved basic-helix-loop-helix-leucine zipper (bHLH-zip) DNA-binding domain. Two different USF genes, termed USF1 and USF2, are ubiquitously expressed in both humans and mice. The USF1 and USF2 proteins contain highly divergent transcriptional activation domains but share extensive(More)
The mechanisms governing the function of cellular USF and herpesvirus immediate-early transcription factors are subjects of considerable interest. In this regard, we identified a novel form of coordinate gene regulation involving a cooperative interplay between cellular USF and the varicella-zoster virus immediate-early protein 62 (IE 62). A single(More)
This study investigates the potential correlation between acalculous biliary pain and mechanical stress during the bile-emptying phase. This study is built on the previously developed mathematical model used to estimate stress in the gallbladder wall during emptying [Li, W. G., X. Y. Luo, et al. Comput. Math. Methods Med. 9(1):27-45, 2008]. Although the(More)
Inverse estimation of biomechanical parameters of soft tissues from non-invasive measurements has clinical significance in patient-specific modelling and disease diagnosis. In this paper, we propose a fully nonlinear approach to estimate the mechanical properties of the human gallbladder wall muscles from in vivo ultrasound images. The iteration method(More)
The objective of this study was to investigate the pharmacokinetics and bioavailability of valnemulin in broiler chickens after intravenous (i.v.), intramuscular (i.m.) and oral administrations of 10 mg/kg body weight (bw). Plasma samples were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Pharmacokinetic(More)
Apoptotic cell death mediated by the members of the tumor necrosis factor receptor family is an essential process involved in the regulation of cellular homeostasis during development, differentiation, and pathophysiological conditions. Among the cell death receptors comprising the tumor necrosis factor receptor superfamily, CD95/APO-1 (Fas) is the best(More)