Learn More
In the presence of organic templates, six diruthenium diphosphonates, namely, [H3N(CH2)3NH3]2[Ru2(hedp)2] (1), [H3N(CH2)4NH3]2[Ru2(hedp)2].4H2O (2), [H3N(CH2)5NH3]2[Ru2(hedp)2].4H2O (3), [H3N(CH2)3NH3][Ru2(hedp)(hedpH)].H2O (4), [H3N(CH2)4NH3][Ru2(hedpH(0.5))2].2H2O (5), and [H3N(CH2)5NH3]2[Ru2(hedp)2][Ru2(hedpH)2]] (6) [hedp =(More)
Ruthenium nitrosyl complexes containing the Kläui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)),(More)
η(5)-η(1) ring slippage of [OsCp2] (Cp = η(5)-C5H5) and [Ru(η(5)-ind)2] (ind = indenyl) resulting from reaction with the ruthenium(VI) nitride [Ru(L(OEt))(N)Cl2] (1; L(OEt)(-) = [CoCp{P(O)(OEt)2}3](-)) is reported. The treatment of [OsCp2] or [Ru(η(5)-ind)2] with 1 resulted in η(5)-η(1) ring slippage of the cycloolefin ligands and formation of the(More)
This paper reports the synthesis and crystal structure of a novel mixed valence ruthenium(II,III) compound, (NH(4))(3)Ru(2)(hedp)(2).2H(2)O (1), where hedp represents 1-hydroxyethylidenediphosphonate. It has a two-dimensional structure in which the paddlewheel diruthenium(II,III) units of Ru(2)(hedp)(2) are cross-linked through the phosphonate groups. The(More)
Treatment of [n-Bu4N][Ru(N)Cl4] with [AgL(OEt)] (L(OEt)- = [(eta5-C5H5)Co{P(O)(OEt)2}3]-) afforded the ruthenium(VI) nitrido complex [L(OEt)Ru(N)Cl2] (1), which reacted with PPh3 to give the ruthenium(IV) phosphiniminato complex [L(OEt)Ru(NPPh3)Cl2] (2). The cyclic voltammogram of 2 displays the RuIV/III couple at ca. 0 V vs ferrocenium/ferrocene. Treatment(More)
Four mixed-valent ruthenium diphosphonates, namely, Na(4)[Ru(2)(hedp)(2)X]x16H(2)O [X = Cl (1), Br (2)], K(3)[Ru(2)(hedp)(2)(H(2)O)(2)]x6H(2)O (3), and Na(7)[Ru(2)(hedp)(2)Fe(CN)(6)]x24H(2)O (4), where hedp represents 1-hydroxyethylidenediphosphonate [CH(3)C(OH)(PO(3))(2)](4-), were synthesized and structurally characterized. Compounds 1, 2, and 4 show(More)
Treatment of [(L(OEt))(2)Ti(2)(mu-O)(2)(mu-SO(4))] (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)}(3)](-)) with [Ru(H)(Cl)(CO)(PPh(3))(3)] and Ag(OTf) (OTf(-) = triflate) in the presence of Na(2)CO(3) gave the Ti(IV)-Ru(II) complex [(L(OEt))(2)Ti(2)(mu-O)(3)(mu(3)-SO(4))Ru(CO)(PPh(3))(2)] (2) whereas that with [Re(CO)(5)(OTf)] afforded the Ti(IV)-Re(I)(More)
Treatment of titanyl sulfate in dilute sulfuric acid with 1 equiv of NaL(OEt) (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)](3)](-)) in the presence of Na(3)PO(4) and Na(4)P(2)O(7) led to isolation of [(L(OEt)Ti)(3)(mu-O)(3)(mu(3-)PO(4))] (1) and [(L(OEt)Ti)(2)(mu-O)(mu-P(2)O(7))] (2), respectively. The structure of 1 consists of a Ti(3)O(3) core capped by(More)
Dinuclear ruthenium nitrido complexes supported by the Kläui's tripodal ligand [CpCo{P(O)(OEt)(2)}(3)](-) (L(OEt)(-)) have been synthesized starting from the ruthenium(VI) nitrido precursor [L(OEt)Ru(VI)(N)Cl(2)] (1). Heating a solution of 1 in CCl(4) at reflux, followed by recrystallization from hexane under nitrogen, afforded the mixed-valence(More)
The treatment of [Ru(L(OEt))(N)Cl(2)] (1; L(OEt)(-) = [Co(η(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with Et(3)SiH affords [Ru(L(OEt))Cl(2)(NH(3))] (2), whereas that with [Ru(L(OEt))(H)(CO)(PPh(3))] (3) gives the dinuclear imido complex [(L(OEt))Cl(2)Ru(μ-NH)Ru(CO)(PPh(3))(L(OEt))] (4). The imido group in 4 binds to the two ruthenium atoms unsymmetrically with(More)