Learn More
Schizophrenia is one of the most debilitating neuropsychiatric disorders, affecting 0.5-1.0% of the population worldwide. Its pathology, attributed to defects in synaptic transmission, remains elusive. The dystrobrevin-binding protein 1 (DTNBP1) gene, which encodes a coiled-coil protein, dysbindin, is a major susceptibility gene for schizophrenia. Our(More)
The hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, or cardiac (I(f))/neuronal (I(h)) time- and voltage-dependent inward cation current channels, are conventionally considered as monovalent-selective channels. Recently we discovered that calcium ions can permeate through HCN4 and I(h) channels in neurons. This raises the possibility of(More)
It is widely known that hypocretins are essential for the regulation of wakefulness. Our recent reports have found that hypocretin-1 shows a direct postsynaptic excitatory effect on rat prefrontal cortex (PFC) pyramidal neurons. It remains unclear whether hypocretin-1 may interact with two classical neurotransmitter systems, glutamate and gamma-aminobutyric(More)
Our previous observations showed that several stimuli, including high-K(+) solution, glutamate, and voltage pulses, induce somatic noradrenaline (NA) secretion from locus ceruleus (LC) neurons. Hypocretin (orexin), a hypothalamic peptide critical for normal wakefulness, has been shown to evoke NA release from the axon terminals of LC neurons. Here, we used(More)
Norepinephrine (NE) released from the nerve terminal of locus coeruleus (LC) neurons contributes to about 70% of the total extracellular NE in primates brain. In addition, LC neurons also release NE from somatodendritic sites. Quantal NE release from soma of LC neurons has the characteristics of long latency, nerve activity-dependency, and autoinhibition by(More)
We have investigated the direct excitatory effects of hypocretin-1 on acutely isolated prefrontal cortical pyramidal neurons and explored the signaling mechanisms of these actions. Puff application of hypocretin-1 caused an excitation in the recorded neurons. These effects of hypocretin-1 were abolished by a phospholipase C inhibitor D609, demonstrating(More)
The neuropeptide cholecystokinin octapeptide (CCK) is involved in a variety of brain functions. In the hippocampus, most CCK is released from CCK-positive (CCK+) neurons, but the effects of CCK on CCK+ neurons are poorly understood. We employed primary hippocampal cultures to explore the modulatory effect of CCK on CCK+ neurons. CCK-8S (0.2 μM) was added to(More)
Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing-a crosstalk with(More)
Orexins have been shown to be implicated in the regulation of adrenal medulla functions. However, there are still inconsistent investigations on the effects of orexins on catecholamine release from chromaffin cells in varying species. In the present study, using the carbon-fiber amperometry, we investigated whether orexin A would stimulate catecholamine(More)