Xiao-Qin Cao

Learn More
Polymorphisms in miRNA binding sites have been shown to affect miRNA binding to target genes, resulting in differential mRNA and protein expression and susceptibility to common diseases. Our purpose was to predict SNPs (single nucleotide polymorphisms) within miRNA binding sites of inflammatory genes in relation to gastric cancer. A complete list of SNPs in(More)
Many cellular processes exhibit periodic behaviors. Hence, one of the important tasks in gene expression data analysis is to detect subset of genes that exhibit cyclicity or periodicity in their gene expression time series profiles. Unfortunately, gene expression time series profiles are usually of very short length, with very few periods, irregularly(More)
We comment on the flexibility profiles calculated by Zeng et al., and show that these profiles do not represent the local flexibility of the DNA molecule. If one takes into account the physics of elasticity, the averaged flexibility profile show an additional peak which is missed in the original calculation. We show that it is not possible to calculate the(More)
DNA rigidity is an important physical property originating from the DNA three-dimensional structure. Although the general DNA rigidity patterns in human promoters have been investigated, their distinct roles in transcription are largely unknown. In this paper, we discover four highly distinct human promoter groups based on similarity of their rigidity(More)
Sequence-dependent DNA flexibility is an important structural property originating from the DNA 3D structure. In this paper, we investigate the DNA flexibility of the budding yeast (S. Cerevisiae) replication origins on a genome-wide scale using flexibility parameters from two different models, the trinucleotide and the tetranucleotide models. Based on(More)
The capacity of transcription factors to activate gene expression is encoded in the promoter sequences, which are composed of short regulatory motifs that function as transcription factor binding sites (TFBSs) for specific proteins. To the best of our knowledge, the structural property of TFBSs that controls transcription is still poorly understood.(More)