Xiao-Qian Wang

Learn More
The structural and electronic characteristics of fluorinated graphene are investigated based on first-principles density-functional calculations. A detailed analysis of the energy order for stoichiometric fluorographene membranes indicates that there exists prominent chair and stirrup conformations, which correlate with the experimentally observed in-plane(More)
Graphene's adhesive and charge delocalization properties offer the opportunity for the direct study of biological molecule in the nanoscale regime. The inherent charge on DNA base pairs and the associated phosphate backbone can be probed by non-covalent interactions with graphene, which is a useful platform for the creation of anisotropic nanopatterned(More)
A human oral tumour progression model was established that consists of normal epithelial cells and three cell lines representing stages from dysplastic to metastatic cells. To investigate the impact of exogenous transforming growth factor-beta 1 on this model system, we analysed the responsiveness of those cells to transforming growth factor-beta 1 and(More)
In this Letter we disclose a method to fabricate a liquid crystal (LC) Fresnel zone lens (FZL) with higher efficiency. The LCFZL, based on alternate twisted nematic (TN) and planar aligned (PA) regions, has been prepared by means of a two-step photo-alignment process. The FZL profile for both optical regimes, i.e., in TN and PA alignment domains, generates(More)
Graphane is a two-dimensional system consisting of a single planar layer of fully saturated carbon atoms, which has recently been realized experimentally through hydrogenation of graphene membranes. We have studied the stability of chair, boat, and twist-boat graphane structures using first-principles density functional calculations. Our results indicate(More)
The electronic structure characteristics of supramolecular functionalization of graphene nanoribbons with π-conjugated polymers are investigated using first-principles density functional theory. Noncovalent polymer functionalization leads to distinct changes in the electronic properties, particularly the band gaps of metallic and semimetallic graphene(More)
We have studied the structural and electronic stability of a helical ribbon of flavin mononucleotide wrapping around single-walled carbon nanotubes using first-principles density-functional calculations. The helical ribbon is formed through hydrogen bonding between adjacent uracil moieties of the isoalloxazine ring and stabilized through concentric pi-pi(More)
We have derived an analytical effective-mass model and employed first-principles density functional theory to study the spatial confinement of carriers in core-shell and multishell structured semiconductor nanowires. The band offset effect is analyzed based on the subband charge density distributions, which is strongly dependent upon the strain relaxation.(More)
Complementary doped donor and acceptor dipoles effectively generate confinement potentials for carriers across a p-type/intrinsic/n-type coaxial nanowire due to the lineup of charge neutrality level. In order to verify this physical picture, we employ first-principles density functional theory to study the confinement of electrons and holes in complementary(More)