Xiao-Qian Wang

Learn More
We have studied the electronic structural characteristics of hydrogenated bilayer graphene under a perpendicular electric bias using first-principles density functional calculations. The bias voltage applied between the two hydrogenated graphene layers allows continuous tuning of the band gap and leads to transition from semiconducting to metallic state.(More)
The electronic structure characteristics of supramolecular functionalization of graphene nanoribbons with π-conjugated polymers are investigated using first-principles density functional theory. Noncovalent polymer functionalization leads to distinct changes in the electronic properties, particularly the band gaps of metallic and semimetallic graphene(More)
The electronic characteristics of a planar covalent organic framework (COF) on graphene are investigated by means of dispersion-corrected density functional theory. The aromatic central molecule of the COF acts as an electron donor to graphene, while the linker of the COF acts as an electron acceptor. The concerted interaction between the filled orbitals of(More)
Graphane is a two-dimensional system consisting of a single planar layer of fully saturated carbon atoms, which has recently been realized experimentally through hydrogenation of graphene membranes. We have studied the stability of chair, boat, and twist-boat graphane structures using first-principles density functional calculations. Our results indicate(More)
We have studied the electronic characteristics of multilayer epitaxial graphene under a perpendicularly applied electric bias. Ultraviolet photoemission spectroscopy measurements reveal that there is notable variation of the electronic density-of-states in valence bands near the Fermi level. Evolution of the electronic structure of graphite and(More)
Noncovalent functionalization provides an effective way to modulate the electronic properties of graphene. Recent experimental work has demonstrated that hybrids of dipolar phototransductive molecules tethered to graphene are reversibly tunable in doping. We have studied the electronic structure characteristics of chromophore/graphene hybrids using(More)
The structural and electronic characteristics of fluorinated graphene are investigated based on first-principles density-functional calculations. A detailed analysis of the energy order for stoichiometric fluorographene membranes indicates that there exists prominent chair and stirrup conformations, which correlate with the experimentally observed in-plane(More)
Isolation of single-walled carbon nanotubes (SWNTs) with specific chirality and diameters is critical for achieving optimum performance of SWNTs in various applications. A water-soluble π-conjugated polymer, poly[(m-phenyleneethynylene)-alt-(p-phenyleneethynylene)], 3, is found to exhibit high selectivity in dispersing SWNT (6,5). The polymer's ability to(More)
Graphene's adhesive properties owing to inherent van der Waals interactions become increasingly relevant in the nanoscale regime. Polymer self-assembly via graphene-mediated noncovalent interactions offers a powerful tool for the creation of anisotropic nanopatterned systems. Here, we report the supramolecular self-assembly of biofunctional-modified(More)