Learn More
Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We fabricated such sample structures with low density and high mobility in which we could tune, through an external gate voltage, the carrier conduction from(More)
Following the recent observation of the quantum spin Hall (QSH) effect in HgTe quantum wells, an important issue is to understand the effect of impurities on transport in the QSH regime. Using linear response and renormalization group methods, we calculate the edge conductance of a QSH insulator as a function of temperature in the presence of a magnetic(More)
Existence of the magnetic monopole is compatible with the fundamental laws of nature; however, this elusive particle has yet to be detected experimentally. We show theoretically that an electric charge near a topological surface state induces an image magnetic monopole charge due to the topological magneto-electric effect. The magnetic field generated by(More)
Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi(2)Se(3) and related materials have been proposed as three-dimensional topological(More)
The quantum spin Hall (QSH) state is a topologically nontrivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells and in this Letter we predict a similar effect arising in(More)
The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Recently, a new class of topological insulators has been proposed. These topological insula-tors have an insulating gap in the bulk, but have topologically protected edge states due to the time reversal symmetry. In two dimensions the helical(More)
We construct time-reversal invariant topological superconductors and superfluids in two and three dimensions. These states have a full pairing gap in the bulk, gapless counterpropagating Majorana states at the boundary, and a pair of Majorana zero modes associated with each vortex. The superfluid 3He B phase provides a physical realization of the(More)
We consider extended Hubbard models with repulsive interactions on a honeycomb lattice, and the transitions from the semimetal to Mott insulating phases at half-filling. Because of the frustrated nature of the second-neighbor interactions, topological Mott phases displaying the quantum Hall and the quantum spin Hall effects are found for spinless and spin(More)
The surface states of a topological insulator are described by an emergent relativistic massless Dirac equation in 2 + 1 dimensions. In contrast with graphene, there is an odd number of Dirac points, and the electron spin is directly coupled to the momentum. We show that a magnetic impurity opens up a local gap and suppresses the local density of states.(More)
Nonlocal transport through edge channels holds great promise for low-power information processing. However, edge channels have so far only been demonstrated to occur in the quantum Hall regime, at high magnetic fields. We found that mercury telluride quantum wells in the quantum spin Hall regime exhibit nonlocal edge channel transport at zero external(More)