Learn More
RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary(More)
When search is against structured documents, it is beneficial to extract information from user queries in a format that is consistent with the backend data structure. As one step toward this goal, we study the problem of query tagging which is to assign each query term to a pre-defined category. Our problem could be approached by learning a conditional(More)
BACKGROUND Sweet potato (Ipomoea batatas L. [Lam.]) ranks among the top six most important food crops in the world. It is widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses. However, little is known about the molecular biology of this important non-model organism due to lack of genomic(More)
—This paper proposes a general framework to effectively estimate the unknown timing and channel parameters, as well as design efficient timing resynchronization algorithms for asynchronous amplify-and-forward (AF) cooperative communication systems. In order to obtain reliable timing and channel parameters, a least squares (LS) estimator is proposed for(More)
Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but(More)
In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion.(More)