Learn More
FAK is known as an integrin- and growth factor-associated tyrosine kinase promoting cell motility. Here we show that, during mouse development, FAK inactivation results in p53- and p21-dependent mesodermal cell growth arrest. Reconstitution of primary FAK-/-p21-/- fibroblasts revealed that FAK, in a kinase-independent manner, facilitates p53 turnover via(More)
Cell migration is a dynamic process that involves the continuous formation, maturation, and turnover of matrix-cell adhesion sites. New (nascent) adhesions form at the protruding cell edge in a tension-independent manner and are comprised of integrin receptors, signaling, and cytoskeletal-associated proteins. Integrins recruit focal adhesion kinase (FAK)(More)
Focal adhesion kinase (FAK) plays a critical role during vascular development because knockout of FAK in endothelial cells (ECs) is embryonic lethal. Surprisingly, tamoxifen-inducible conditional knockout of FAK in adult blood vessels (inducible EC-specific FAK knockout [i-EC-FAK-KO]) produces no vascular phenotype, and these animals are capable of(More)
Vascular cell adhesion molecule-1 (VCAM-1) plays important roles in development and inflammation. Tumor necrosis factor-α (TNF-α) and focal adhesion kinase (FAK) are key regulators of inflammatory and integrin-matrix signaling, respectively. Integrin costimulatory signals modulate inflammatory gene expression, but the important control points between these(More)
Pharmacological focal adhesion kinase (FAK) inhibition prevents tumor growth and metastasis, via actions on both tumor and stromal cells. In this paper, we show that vascular endothelial cadherin (VEC) tyrosine (Y) 658 is a target of FAK in tumor-associated endothelial cells (ECs). Conditional kinase-dead FAK knockin within ECs inhibited recombinant(More)
The role of rat neuronal calcium sensor-1 (NCS-1), a Ca2+-binding protein, in synapse formation and transmitter release was examined in mouse neuroblastoma x rat glioma hybrid NG108-15 cells in culture. Wild-type NG108-15 cells expressed rodent NCS-1. Endogenous NCS-1 was partially co-localized with the synaptic protein SNAP-25 at the plasma membrane in(More)
Integrin binding to matrix proteins such as fibronectin (FN) leads to formation of focal adhesion (FA) cellular contact sites that regulate migration. RhoA GTPases facilitate FA formation, yet FA-associated RhoA-specific guanine nucleotide exchange factors (GEFs) remain unknown. Here, we show that proline-rich kinase-2 (Pyk2) levels increase upon loss of(More)
In PC-12 cells differentiated with nerve growth factor, neuropeptide Y (NPY) potentiated the K(+)-evoked increase in intracellular calcium, but this potentiation was not mediated by classical Y1 or Y2 NPY receptors. The potentiation by NPY appeared to occur through the mobilization of calcium from intracellular stores because thapsigargin successfully(More)
Recurrence and spread of ovarian cancer is the 5th leading cause of death for women in the United States. Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase located on chromosome 8q24.3 (gene is Ptk2), a site commonly amplified in serous ovarian cancer. Elevated FAK mRNA levels in serous ovarian carcinoma are associated with decreased(More)
BACKGROUND Cell migration is a highly regulated process that involves the formation and turnover of cell-matrix contact sites termed focal adhesions. Rho-family GTPases are molecular switches that regulate actin and focal adhesion dynamics in cells. Guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases. Rgnef (p190RhoGEF) is a ubiquitous(More)