Xiao-Ke Xu

Learn More
Numerous concise models such as preferential attachment have been put forward to reveal the evolution mechanisms of real-world networks, which show that real-world networks are usually jointly driven by a hybrid mechanism of multiplex features instead of a single pure mechanism. To get an accurate simulation for real networks, some researchers proposed a(More)
Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among(More)
Mathematical models for systems of interacting agents using simple local rules have been proposed and shown to exhibit emergent swarming behavior. Most of these models are constructed by intuition or manual observations of real phenomena, and later tuned or verified to simulate desired dynamics. In contrast to this approach, we propose using a model that(More)
Unraveling complex interactions between animal species is of paramount importance to understand competition, facilitation, and community assembly processes. Using data from GPS positions of sheep (Ovis aries) and red deer (Cervus elaphus) grazing a moorland plot, we modeled the animal movement of each species as a function of the distance between(More)
  • 1