Learn More
Stimulus-specific persistent neural activity is the neural process underlying active (working) memory. Since its discovery 30 years ago, mnemonic activity has been hypothesized to be sustained by synaptic reverberation in a recurrent circuit. Recently, experimental and modeling work has begun to test the reverberation hypothesis at the cellular level.(More)
When the local field potential of a cortical network displays coherent fast oscillations ( approximately 40-Hz gamma or approximately 200-Hz sharp-wave ripples), the spike trains of constituent neurons are typically irregular and sparse. The dichotomy between rhythmic local field and stochastic spike trains presents a challenge to the theory of brain(More)
An important question in neuroscience is whether and how temporal patterns and fluctuations in neuronal spike trains contribute to information processing in the cortex. We have addressed this issue in the memory-related circuits of the prefrontal cortex by analyzing spike trains from a database of 229 neurons recorded in the dorsolateral prefrontal cortex(More)
Although spike-frequency adaptation is a commonly observed property of neurons, its functional implications are still poorly understood. In this work, using a leaky integrate-and-fire neural model that includes a Ca2+-activated K+ current (IAHP), we develop a quantitative theory of adaptation temporal dynamics and compare our results with recent in vivo(More)
Slow oscillatory activity (<1 Hz) is observed in vivo in the cortex during slow-wave sleep or under anesthesia and in vitro when the bath solution is chosen to more closely mimic cerebrospinal fluid. Here we present a biophysical network model for the slow oscillations observed in vitro that reproduces the single neuron behaviors and collective network(More)
The authors note that the equation for ψ(ν) (average gating variable of NMDA channels as a function of presynaptic rates, equation following equation 6, p.80) is not exact, contrary to what is stated in the paper. This equation was derived using an expansion in central moments of the variable x which appears in the system of differential equations for the(More)
Experimental evidence suggests that the maintenance of an item in working memory is achieved through persistent activity in selective neural assemblies of the cortex. To understand the mechanisms underlying this phenomenon, it is essential to investigate how persistent activity is affected by external inputs or neuromodulation. We have addressed these(More)
We report a computer simulation of the visuospatial delayed-response experiments of Funahashi et al. (1989), using a firing-rate model that combines intrinsic cellular bistability with the recurrent local network architecture of the neocortex. In our model, the visuospatial working memory is stored in the form of a continuum of network activity profiles(More)