Learn More
Quantitative real-time PCR (RT-qPCR) has become an accurate and widely used technique to analyze expression levels of selected genes. It is very necessary to select appropriate reference genes for gene expression normalization. In the present study, we assessed the expression stability of 11 reference genes including eight traditional housekeeping genes and(More)
BACKGROUND Aromatic essential oils extracted from fresh fruits of Litsea cubeba (Lour.) Pers., have diverse medical and economic values. The dominant components in these essential oils are monoterpenes and sesquiterpenes. Understanding the molecular mechanisms of terpenoid biosynthesis is essential for improving the yield and quality of terpenes. However,(More)
Real-time Quantitative PCR (RT-qPCR) has become an effective method for accurate analysis of gene expression in several biological systems as well as under different experimental conditions. Although with high sensitivity, specificity and broad dynamic range, this method requires suitable reference genes for transcript normalization in order to guarantee(More)
NAM/ATAF/CUC (NAC) family genes comprise one of the largest families of transcription factors in plant genomes and are widely expressed in developing woody tissues. In the present study, we constructed plant transformation vectors using the β-glucuronidase (GUS) reporter gene system and detected the promoter expression patterns derived from the PtNAC068 and(More)
Quantitative real-time PCR has emerged as a highly sensitive and widely used method for detection of gene expression profiles, via which accurate detection depends on reliable normalization. Since no single control is appropriate for all experimental treatments, it is generally advocated to select suitable internal controls prior to use for normalization.(More)
Litsea cubeba (Lour.) Pers. is a promising industrial crop with fruits rich in essential oils. The chemical composition of essential oils of L. cubeba (EOLC) were determined for fruits harvested from eight regions in China. The overall essential oil content, obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS), ranged(More)
Salinity in soils is among the major constraints of agricultural and forestry productivity worldwide. To investigate the basis of salt tolerance in Salix matsudana Koidz (Chinese willow), comparative proteomes of 1.5-month-old cuttings were analyzed using two-dimensional gel electrophoresis (2-DE). Proteins were extracted from roots of plants grown under(More)
BACKGROUND Dendrocalamus latiflorus Munro distributes widely in subtropical areas and plays vital roles as valuable natural resources. The transcriptome sequencing for D. latiflorus Munro has been performed and numerous genes especially those predicted to be unique to D. latiflorus Munro were revealed. qRT-PCR has become a feasible approach to uncover gene(More)
Salt stress exerts negative effects on plant growth, development and yields, with roots being the primary site of both perception and damage. Salix matsudana (Chinese willow) is tolerant of high salinity. However, genes associated with this trait were rarely characterized. Therefore, we first performed salt-stress treatment on S. matsudana plants, then(More)
The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co-hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the(More)