Learn More
The objective of this study was to optimize and characterize a novel polymeric mixed micelle composed of Pluronic P123 and F127 loaded with paclitaxel (PTX). A Doehlert matrix design was utilized to investigate the effect of four variables, namely P123 mass fraction, amount of water, feeding of PTX and hydration temperature on the responses including(More)
A significant obstacle for successful chemotherapy with paclitaxel (PTX) is multidrug resistance (MDR) in tumor cells. Micelles and mixed micelles were prepared from Pluronic block copolymer P105 or L101 as PTX delivery systems for overcoming MDR. Both micelle systems were covalently modified with the targeting agent folic acid to recognize and bind a(More)
The aim of this study was to exploit the possibility of combination of active targeting function of folic acid by folate receptor-mediated endocytosis and overcoming multidrug resistance (MDR) by Pluronic block copolymers to promote drug delivery to MDR tumor following intravenous administration with paclitaxel (PTX) as model drug. Folic acid functionalized(More)
The aim of this study was to investigate the effect of two novel self-microemulsifying drug delivery systems (SMEDDS) containing Labrasol with different dilutions on tight junctions. Changes in barrier properties of Caco-2 cell monolayers, including transepithelial electrical resistance (TEER) and permeability to the paracellular marker, i.e., mannitol,(More)
The aim of this work was to investigate the anti-tumor effect of paclitaxel (PTX)-loaded methoxy poly(ethylene glycol)-poly(ɛ-caprolactone) nanoparticles (MPEG-NP/PTX) against glioblastoma multiforme (GBM). MPEG-NP/PTX was prepared by the emulsion and evaporation technique with particle size of 72.5±2.2nm and did not change remarkably during the period of(More)
Therapeutic effect of glioma is often limited due to low permeability of delivery systems across the Blood-Brain Barrier (BBB) and poor penetration into the tumor tissue. In order to overcome the two barriers, we proposed Angiopep-conjugated PEG-PCL nanoparticles (ANG-PEG-NP) as a dual targeting drug delivery system for glioma treatment basing on low(More)
The aim of this work was to demonstrate the advantage of using paclitaxel (PTX)-loaded Pluronic P123/F127 mixed micelles (PF-PTX) against non-small cell lung cancer (NSCLC) compared to Taxol. Modulation of multidrug resistance (MDR) by Pluronic mixed micelles was evaluated in lung resistance protein (LRP)-overexpressing human lung adenocarcinoma A-549 cell(More)
Three poly(caprolactone)-modified Pluronic P105 polymers (P105/PCLs) were synthesized using commercially available ε-caprolactone monomers and Pluronic P105 copolymers. The chemical structures, compositions and molecular weights of the P105/PCLs were confirmed by FT-IR, (1)H NMR and GPC measurements. Three paclitaxel (PTX)-loaded P105/PCL polymeric micelles(More)
Cyclic RGD peptide-decorated polymeric micellar-like nanoparticles (MNP) based on PEGylated poly (trimethylene carbonate) (PEG-PTMC) were prepared for active targeting to integrin-rich cancer cells. An amphiphilic diblock copolymer, α-carboxyl poly (ethylene glycol)-poly (trimethylene carbonate) (HOOC-PEG-PTMC), was synthesized by ring-opening(More)
Based on the facilitative glucose transporter (GLUT) over-expression on both blood-brain barrier (BBB) and glioma cells, 2-deoxy-d-glucose modified poly(ethylene glycol)-co-poly(trimethylene carbonate) nanoparticles (dGlu-NP) were developed as a potential dual-targeted drug delivery system for enhancing the BBB penetration via GLUT-mediated transcytosis and(More)