Learn More
The aim of this work was to establish a novel polymeric mixed micelle composed of Pluronic P105 and F127 copolymers loaded with the poorly soluble antitumor drug docetaxel (DTX) against Taxol-resistant non-small cell lung cancer. A central composite design was utilized to optimize the preparation process, helping to improve drug solubilization efficiency(More)
A Pluronic polymeric mixed micelle delivery system was developed in this study by using Pluronic P105 and F127 block copolymers to encapsulate the antitumor compound, methotrexate (MTX). The MTX-loaded Pluronic P105/F127 mixed micelle exhibited the spherical shape with about 22 nm in diameter, high encapsulation efficiency (about 85%) and pH-dependent in(More)
The objective of our investigation was to design a self-microemulsifying drug-delivery system (SMEDDS) to improve the bioavailability of probucol. SMEDDS was composed of probucol, olive oil, Lauroglycol FCC, Cremophor EL, Tween-80, and PEG-400. Droplet sizes were determined. In vitro release was investigated. Pharmacokinetics and bioavailability of probucol(More)
The therapeutic effect of methotrexate (MTX)-conjugated Pluronic-based polymeric mixed micelles (F127/P105-MTX) on the folate receptor-overexpressing tumors treatment was investigated in this study. Due to its high structural similarity to folic acid and the high expression of folate receptor in most solid tumors, MTX serves as not only a cytotoxic agent(More)
Genexol-PM, produced by Samyang Company (Korea) is an excellent preparation of paclitaxel (PTX) for clinical cancer treatment. However, it cannot resolve the issue of multidrug resistance (MDR)-a significant problem in the administration of PTX to cancer patients. To increase the efficacy of Genexol-PM against MDR tumors, a mixed micelle capable of serving(More)
Previous research suggests that carbohydrate mimetic peptide IF7 (IFLLWQR) has an excellent targeting property to annexin1 (Anxa1), a specific marker on the tumor endothelium. However, IF7 is susceptible to proteolysis and has a poor stability in vivo. We prepared a D-amino acid, reverse sequence peptide of IF7, designated RIF7, to confer protease(More)
We proposed to develop a polycation lipid nanocarrier (PLN) with higher transfection efficiency than our previously described polycation nanostrucutred lipid nanocarrier (PNLC). PLN was composed of triolein, cetylated low-molecular-weight polyethylenimine, and dioleoyl phosphatidylethanolamine. The physicochemical properties of PLN and the PLN/DNA complexes(More)
  • 1