Learn More
A three-dimensional multi-resolution time-domain (MRTD) analysis is presented based on a biorthogonal-wavelet expansion, with application to electromagnetic-scattering problems. We employ the Cohen-Daubechies-Feauveau (CDF) biorthogonal wavelet basis, characterized by the maximum number of vanishing moments for a given support. We utilize wavelets and(More)
The three-dimensional biorthogonal multiresolution time-domain (Bi-MRTD) method is presented for both free-space and half-space scattering problems. The perfectly matched layer (PML) is used as an absorbing boundary condition. It has been shown that improved numerical-dispersion properties can be obtained with the use of smooth, compactly supported wavelet(More)
—The multiresolution time domain (MRTD) is used to analyze wide-band plane-wave scattering from general dielectric targets embedded in a lossy half-space, with free-space scattering as a special case. A Haar wavelet expansion is used for simplicity, this constituting a generalization of the widely used finite-difference time-domain (FDTD) method. In(More)
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of(More)
  • 1