Learn More
Ba(2+) currents through Ca(V)1.2 Ca(2+) channels are typically twice as large as Ca(2+) currents. Replacing Phe-1144 in the pore-loop of domain III with glycine and lysine, and Tyr-1152 with lysine, reduces whole-cell G(Ba)/G(Ca) from 2.2 (wild-type) to 0.95, 1.21, and 0.90, respectively. Whole-cell and single-channel measurements indicate that reductions(More)
Ca(2+) entry through L-type calcium channels (Ca(V)1.2) is critical in shaping the cardiac action potential and initiating cardiac contraction. Modulation of Ca(V)1.2 channel gating directly affects myocyte excitability and cardiac function. We have found that phospholemman (PLM), a member of the FXYD family and regulator of cardiac ion transport,(More)
We have found that phospholemman (PLM) associates with and modulates the gating of cardiac L-type calcium channels (Wang et al., Biophys J 98: 1149-1159, 2010). The short 17 amino acid extracellular NH(2)-terminal domain of PLM contains a highly conserved PFTYD sequence that defines it as a member of the FXYD family of ion transport regulators. Although we(More)
Side-chain vinyl poly(dimethylsiloxane) has been modified with mercaptopropionic acid, methyl 3-mercaptopropionate, and mercaptosuccinic acid. Coordinative bonding of Eu(III) to the functionalized polysiloxanes was then carried out and crosslinked silicone elastomers were prepared by thiol-ene curing reactions of these composites. All these europium(More)
Glutamate scanning mutagenesis was used to assess the role of the calcicludine binding segment in regulating channel permeation and gating using both Ca(2+) and Ba(2+) as charge carriers. As expected, wild-type Ca(V)1.2 channels had a Ba(2+) conductance ~2x that in Ca(2+) (G(Ba)/G(Ca) = 2) and activation was ~10 mV more positive in Ca(2+) vs. Ba(2+). Of the(More)
The endoplasmic reticulum (ER) Ca(2+) sensor, STIM1, becomes activated when ER-stored Ca(2+) is depleted and translocates into ER-plasma membrane junctions where it tethers and activates Orai1 Ca(2+) entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)--the minimal sequence sufficient to activate Orai1 channels.(More)
How dihydropyridines modulate L-type voltage-gated Ca2+ channels is not known. Dihydropyridines bind cooperatively with Ca2+ binding to the selectivity filter, suggesting that they alter channel activity by promoting structural rearrangements in the pore. We used radioligand binding and patch-clamp electrophysiology to demonstrate that calcicludine, a toxin(More)
This paper presents an analytical solution for periodical electroosmotic flows in two-dimensional uniform microchannel based on Poisson-Boltzmann equations for electric double layer (EDL) and Navier-Stokes equation for incompressible viscous fluid. Analytical results indicate that the velocity of periodical electroosmosis strongly depends on Reynolds number(More)