Learn More
Epidermal growth factor receptor (EGFR) has been well characterized as an important target for cancer therapy. Immunotherapy based on EGFR-specific antibodies (e.g., panitumumab and cetuximab) has shown great clinical promise. However, increasing evidence has indicated that only a subgroup of patients receiving these antibodies will benefit from them, and(More)
UNLABELLED Integrin αvβ6, a member of the integrin family, is specifically expressed in many malignancies but not in normal organs. Overexpression of integrin αvβ6 is usually correlated with malignant potential and poor prognosis. In this study, we describe the synthesis and evaluation of a (99m)Tc-labeled integrin αvβ6-targeting peptide as a SPECT(More)
Significant evidence has indicated that tumor-associated macrophages (TAMs) play a critical role in the proliferation, invasion, angiogenesis, and metastasis of a variety of human carcinomas. In this study, we investigated whether near-infrared fluorescence (NIRF) imaging using a macrophage mannose receptor (MMR; CD206)-targeting agent could be used to(More)
Cetuximab is an antiepidermal growth factor receptor (EGFR) monoclonal antibody that has received the approval of the Food and Drug Administration (FDA) for cancer treatment. However, most clinical studies indicate that cetuximab can only elicit positive effects on a subset of cancer patients. In this study, we investigated whether near-infrared(More)
PURPOSE To assess the potential utility of an integrin αvβ3-targeting radiotracer, technetium 99m-PEG4-E[PEG4-cyclo(arginine-glycine-aspartic acid-D-phenylalanine-lysine)]2 ((99m)Tc-3PRGD2), for single photon emission computed tomography (SPECT)/computed tomography (CT) for monitoring of the progression and prognosis of liver fibrosis in a rat model. (More)
UNLABELLED Epidermal growth factor receptor (EGFR) expression is upregulated in many types of tumors, and the EGFR tyrosine kinase inhibitor gefitinib has high potential as an anticancer drug. However, accumulating clinical evidence has indicated that only a subset of patients benefit from gefitinib treatment. This study aimed to determine whether optical(More)
UNLABELLED Noninvasive, real-time, quantitative measurement of key biomarkers associated with cancer therapeutic interventions could provide a better understanding of cancer biology. We investigated in this study whether incorporating multiple molecular imaging approaches could be used to guide dasatinib anti-Src therapy and aid in the rational design of a(More)
Optical imaging is emerging as a powerful tool for the noninvasive imaging of the biological processes in living subjects. This study aimed to investigate whether optical imaging of integrin αvβ3 and vascular endothelial growth factor (VEGF) expression can serve as sensitive biomarkers for tumor early response to antiangiogenic therapy. We synthesized two(More)
UNLABELLED Previous in vitro studies demonstrated that treating tumors expressing both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 with trastuzumab resulted in increased EGFR homodimerization and subsequent rapid downregulation of EGFR. We investigated whether molecular imaging using near-infrared fluorescence (NIRF)(More)
Cancer-targeted radionuclide therapy is a promising approach for the treatment of a wide variety of malignancies, especially those resistant to conventional therapies. However, to improve the use of targeted radionuclide therapy for the management of cancer patients, the in vivo behaviors, dosimetry, and efficacy of radiotherapeutic agents need to be well(More)
  • 1