Xianhua Tang

Learn More
In this paper, a class of simplified tri-neuron BAM network model with two delays is considered. By applying the frequency domain approach and analyzing the associated characteristic equation, the existence of bifurcation parameter point is determined. If the sum tau of delays tau(1) and tau(2) is chosen as a bifurcation parameter, it is found that Hopf(More)
We consider a periodic Lotka–Volterra competition system without instantaneous negative feedbacks (i.e., pure-delay systems) ẋi (t)= xi(t) [ ri (t)− n ∑ j=1 aij (t)xj ( t − τij (t) )] , i = 1,2, . . . , n. (∗) We establish some 3/2-type criteria for global attractivity of a positive periodic solution of the system, which generalize the well-known Wright’s(More)
In this paper, we consider a simple discrete-time single-directional network of four neurons. The characteristics equation of the linearized system at the zero solution is a polynomial equation involving very high-order terms. We first derive some sufficient and necessary conditions ensuring that all the characteristic roots have modulus less than 1. Hence,(More)
Sufficient conditions are established for the oscillation of the linear two-dimensional difference system ∆xn = pn yn, ∆yn−1 = −qnxn, n ∈ N (n0) = {n0, n0 + 1, . . .}, where {pn}, {qn} are nonnegative real sequences. Our results extend the results in the literature. c © 2007 Elsevier Ltd. All rights reserved.