Learn More
After slow freezing, the survival rate of human embryonic stem (hES) cells is poor and inconsistent. The aim of this study was to increase the freeze-thaw survival rate of hES cells by utilizing the ROCK inhibitor Y-27632. hES cell colonies were first treated with Y-27632, followed by collagenase IV and TrypLE Select dissociation whereupon small clumps were(More)
BACKGROUND Efficient slow freezing protocols within serum-free and feeder-free culture systems are crucial for the clinical application of human embryonic stem (hES) cells. Frequently, however, hES cells must be cryopreserved as clumps when using conventional slow freezing protocols, leading to lower survival rates during freeze-thaw and limiting their(More)
Since the derivation of human embryonic stem (hES) cells, their translation to clinical therapies has been met with several challenges, including the need for large-scale expansion and controlled differentiation processes. Suspension bioreactors are an effective alternative to static culture flasks as they enable the generation of clinically relevant cell(More)
Human embryonic stem (hES) cells hold great promise for application of human cell and tissue replacement therapy. However, the overwhelming majority of currently available hES cell lines have been directly or indirectly exposed to materials containing animal-derived components during their derivation, propagation, and cryopreservation. Unlike feeder-based(More)
Since their derivation, human embryonic stem (hES) cells have been used for a variety of applications including developmental biology, pathology, chemical biology, genomics, and proteomics. However, their most important potential application is the generation of cells and tissues, which can be used for cell-based therapies. One of the main drawbacks of hES(More)
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are(More)
  • 1