Xiangyang Ji

Learn More
Deep Convolution Neural Networks (DCNNs) are capable of learning unprecedentedly effective image representations. However, their ability in handling significant local and global image rotations remains limited. In this paper, we propose Active Rotating Filters (ARFs) that actively rotate during convolution and produce feature maps with location and(More)
This paper proposes a new method for abnormal behavior detection in surveillance videos via sparse reconstruction analysis. The motion trajectories of objects are firstly defined as fixed-length parametric vectors based on approximating cubic B-spline curves. Then the vectors are classified as behavior patterns and finally distinguished between normal and(More)
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production(More)
The problem of pedestrian detection in image and video frames has been extensively investigated in the past decade. However, the low performance in complex scenes shows that it remains an open problem. In this paper, we propose to cascade simple Aggregated Channel Features (ACF) and rich Deep Convolutional Neural Network (DCNN) features for efficient and(More)
An online feature evaluation method for visual object tracking is put forward in this paper. Firstly, a combined feature set is built using color histogram (HC) bins and gradient orientation histogram (HOG) bins considering the color and contour representation of an object respectively. Then a novel method is proposed to evaluate the features¿ weights in a(More)
Pedestrian detection in images and video frames is challenged by the view and posture problem. In this paper, we propose a new pedestrian detection approach by error correcting output code (ECOC) classification of manifold subclasses. The motivation is that pedestrians across views and postures form a manifold and that the ECOC method constructs a nonlinear(More)
A new method for text detection and recognition in natural scene images is presented in this paper. In the detection process, color, texture, and OCR statistic features are combined in a coarse-to-fine framework to discriminate texts from non-text patterns. In this approach, color feature is used to group text pixels into candidate text lines. Texture(More)
Human detection in images is challenged by the view and posture variation problem. In this paper, we propose a piecewise linear support vector machine (PL-SVM) method to tackle this problem. The motivation is to exploit the piecewise discriminative function to construct a nonlinear classification boundary that can discriminate multiview and multiposture(More)