Xiangsheng Xie

Learn More
The resolution limit of far-field optical microscopy is reexamined with a full vectorial theoretical analysis. A highly symmetric excitation optical field and optimized detection scheme are proposed to harness the total point-spread function for a microscopic system. Spatial resolution of better than 1/6λ is shown to be obtainable, giving rise to a(More)
A one-step introduction of functional defects into a photonic crystal is demonstrated. By using a multi-beam phase-controlled holographic lithography, line-defects in a Bragg structure and embedded waveguides in a two-dimensional photonic crystal are fabricated. Intrinsic defect introduction into a 3-dimensional photonic crystal is also proposed. This(More)
We have experimentally demonstrated the measurement of a tighter focal spot generated by a radially polarized narrow-width annular beam with the double-knife-edge method. The reconstructed spot profiles indicate that sharper focus cannot be achieved by shrinking the annular aperture further. The smallest focal spot (0.0711λ(2)) is obtained in experiment(More)
Coherent generated self-imaging bottle beams, typically formed by interfering two coherent quasi-Bessel beams, possess a periodic array of intensity maxima and minima along their axial direction. In practice, the overall quality of the self-repeating intensity patterns is prone to unresolved large intensity variations. In this Letter, we increased(More)
The tightly focused spots of cylindrical vectors (CVs) are dependent on polarization composition. We experimentally demonstrate the effect of polarization purity (PP) of the CV beam on the tightly focused spot quantitatively, which should be strictly controlled for the effective applications of the CV beam. The focal spots measured by a knife-edge scanning(More)
Light propagation behavior in a resonantly absorbing waveguide array is analyzed. Both a Lorentzian line shape and an inhomogeneous broadened absorbing line shape are considered, with their imaginary and real part of the refractive index determined by a Kramers-Kronig relationship. The diffracted wave is shown to have the frequency spectra determined by the(More)
Optical super-resolution technique through tight focusing is a widely used technique to image material samples with anisotropic optical properties. The knowledge of the field distribution of a tightly focused beam in anisotropic media is both scientifically interesting and technologically important. In this paper, the optical properties of a uniaxial(More)
Laser propagation through a turbid rat dura mater membrane is shown to be controllable with a wavefront modulation technique. The scattered light field can be refocused into a target area behind the rat dura mater membrane with a 110 times intensity enhancement using a spatial light modulator. The efficient laser intensity concentration system is(More)
Optical imaging through complex media has many important applications. Although research progresses have been made to recover optical image through various turbid media, the widespread application of the technology is hampered by the recovery speed, requirement on specific illumination, poor image quality and limited field of view. Here we demonstrate that(More)
Polarization modulation of a tightly focused beam in a confocal imaging scheme is considered for incident and collected light fields. Rigorous vector wave theory of a confocal optical microscopy is developed, which provides clear physical pictures without the requirement for fragmentary calculations. Multiple spatial modulations on polarization, phase, or(More)