Learn More
OBJECTIVE Apoptotic cell death is an important factor influencing the prognosis after traumatic brain injury (TBI). Akt/GSK-3beta/beta-catenin signaling plays a critical role in the apoptosis of neurons in several models of neurodegeneration. The goal of this study was to determine if the mechanism of cell survival mediated by the(More)
Remote ischemic postconditioning (RIPostC) has been proved to protect the brain from stroke, but the precise mechanism remains not fully understood. In the present study, we aimed to investigate whether RIPostC attenuates cerebral ischemia-reperfusion injury by abating endoplasmic reticulum (ER) stress response. CHOP, a multifunctional transcription factor(More)
Ischemic stroke is a major cause of death and long-term disability worldwide. Thrombolysis with recombinant tissue plasminogen activator is the only proven and effective treatment for acute ischemic stroke; however, therapeutic hypothermia is increasingly recognized as having a tissue-protective function and positively influencing neurological outcome,(More)
The analysis of biological information from protein sequences is important for the study of cellular functions and interactions, and protein fold recognition plays a key role in the prediction of protein structures. Unfortunately, the prediction of protein fold patterns is challenging due to the existence of compound protein structures. Here, we processed(More)
The mechanism and long-term consequences of early blood-brain barrier (BBB) disruption after cerebral ischaemic/reperfusion (I/R) injury are poorly understood. Here we discover that I/R induces subtle BBB leakage within 30-60 min, likely independent of gelatinase B/MMP-9 activities. The early BBB disruption is caused by the activation of ROCK/MLC(More)
Three cycles of remote ischemic pre-conditioning induced by temporarily occluding the bilateral femoral arteries (10 minutes) prior to 10 minutes of reperfusion were given once a day for 3 days before the animal received middle artery occlusion and reperfusion surgery. The results showed that brain infarct volume was significantly reduced after remote(More)
The stress-activated protein kinase c-Jun N-terminal kinase (JNK) is a central regulator in neuronal death cascades. In animal models of cerebral ischemia, acute inhibition of JNK reduces infarction and improves outcomes. Recently however, emerging data suggest that many neuronal death mediators may have biphasic properties-deleterious in the acute stage(More)
BACKGROUND AND PURPOSE While recent studies suggest that remote ischemic postconditioning (RIP) therapy may be of benefit to patients with acute ischemic stroke, RIP's effects on intracerebral hemorrhage (ICH) still remains unclear. In the present study, the use of RIP in a rat model ICH was investigated to elucidate any potential beneficial or detrimental(More)
Local infusion of low dose erythropoietin (EPO) alleviates cerebral ischemia and reperfusion (I/R) injury in rats; however, the underlying molecular mechanisms are still unclear. The present study investigated the effect of low dose EPO treatment on I/R-induced endoplasmic reticulum (ER) stress in brain tissue and isolated microvessels in rodents.(More)