Learn More
The challenge of image interpolation is to preserve spatial details. We propose a soft-decision interpolation technique that estimates missing pixels in groups rather than one at a time. The new technique learns and adapts to varying scene structures using a 2-D piecewise autoregressive model. The model parameters are estimated in a moving window in the(More)
Recently, many researchers started to challenge a long-standing practice of digital photography: oversampling followed by compression and pursuing more intelligent sparse sampling techniques. In this paper, we propose a practical approach of uniform down sampling in image space and yet making the sampling adaptive by spatially varying, directional low-pass(More)
Considering that quincunx lattice is a more efficient spatial sampling scheme than square lattice, we investigate a new approach of image coding for quincunx sample arrangement. The key findings are: 1) adaptive directional lifting is particularly suited to decorrelate samples on quincunx lattice, and 2) quincunx samples can be processed by a 2D piecewise(More)
In compressive sensing (CS), a challenge is to find a space in which the signal is sparse and, hence, faithfully recoverable. Since many natural signals such as images have locally varying statistics, the sparse space varies in time/spatial domain. As such, CS recovery should be conducted in locally adaptive signal-dependent spaces to counter the fact that(More)
—A digital control electronic ballast for the metal halide lamp is proposed based on the low-frequency square wave, and a comprehensive control strategy is employed for the zero-voltage-switching quasi-square-wave dual buck converter. To achieve the self-adaptive zero-voltage-switching control, the digital control method is used, which greatly reduces the(More)